

From Scientific Staff of the International Plant Nutrition Institute (IPNI) 3500 Parkway Lane, Suite 550 Norcross, Georgia 30092-2806 USA

Phone: 770-447-0335 Fax: 770-448-0439 E-mail: info@ipni.net Website: www.ipni.net

Winter 2008-09, No. 5

A SOIL NITROGEN TEST FOR RICE PRODUCTION

The long-term sustainability of Midsouth rice production depends on efficient management of N fertilizer. Nitrogen fertilizer recommendations for rice in the Midsouth are typically based on grain yield potential of a particular variety or hybrid. However, research has demonstrated that optimum N rates could vary as much as five-fold for comparable varieties grown on similar soil types due largely to site-specific variability in soil N mineralization. The development of a simple soil test for available N can improve the efficiency of rice production.

Various testing methods such as inorganic soil N, biological incubation, and hydrolyzable N [the II-linois Soil N Test (ISNT)] have been evaluated for several crops, but none have been calibrated for use in rice. Some work with incubation tests has shown some promise for rice; however, the test is untimely and the results were highly variable. A better understanding of N availability and how it affects Midsouth rice yield is needed. The development and adoption of a soil N test for rice will help ensure continued improvements in profitability and environmental sustainability of Midsouth rice production.

The rice research team at the University of Arkansas has completed 28 site-years of studies evaluating soil N testing methods for rice. They conducted replicated N response trials on several silt loam soils at experiment stations and in farmer fields across Arkansas. They evaluated the relationship between grain yield and soil N measured using either the ISNT or direct steam distillation (DSD). Good correlation was found between both the ISNT and DSD with relative grain yield across locations.

Results were best using a soil sample collected from an 18 in. depth. The ability of the ISNT and DSD to predict relative grain yield improved with each 6-in. increment down to 18 in., then decreased using a 24-in. sample. This result conflicts with traditional thought that a 6-in. sample is appropriate for assessing available soil N. Relative grain yield in rice appears to be highly dependent on soil N mineralization potential as well as subsoil N availability.

Calibration of a soil-based N test is the most critical step in determining its potential to affect production. The researchers in Arkansas found a strong relationship between soil test N using the two methods and N fertilizer need for their study sites. Similar to their results with grain yield, the best relationship existed at the 18 in. depth. Comparing N rate recommendations based on soil analysis with the standard recommendation for Arkansas rice production, they found deviations in optimum N rate ranging from zero (the standard recommendation was accurate) to 150 lb N/A (the field was non-responsive to N fertilizer), with the average deviation being 81 lb N/A.

These results indicate the strong need for a soil-based N test for fertilizer recommendations in Mid-south rice production; however, more research is necessary. The work in Arkansas was only conducted on silt loam soils with low variability in total N and C and inorganic N. Additional research has been established in Louisiana, Mississippi, and Texas to evaluate soil N testing methods on other soil textures and in different yielding environments.

Site-specific N management is a goal for producers of many crops and identifying the "right rate" for Midsouth rice growers may become easier in the near future.

SRP

For more information, contact Dr. Steve Phillips, Southeast Director, IPNI, 3118 Rocky Meadows Road, Owens Cross Roads, AL 35763. Phone (256) 533-1731. E-mail: sphillips@ipni.net.

Abbreviations for this article: N = nitrogen; C= carbon.