PLANT TO DAY NUTRITION TO DAY

2017 ISSUE 1, NO. 7

HEALTHY SOIL NEEDS BURIED PHOSPHATE

Today's conservation tillage systems do a lot less mixing. When soils were moldboard plowed, the top six to ten inches of soil were inverted, aggressively blending in concentrated layers, bands or pockets of nutrients. In a regularly plowed field, a sample taken to two inches depth gave more or less the same result as one taken to the full depth of plowing.

With advent of conservation tillage and no-till systems, however, that changed. Applied nutrients are no longer mixed as thoroughly into the soil. Crop residues stay on the soil surface, and release their nutrients there. For a nutrient

like phosphorus (P) that moves slowly through soil, this means that the top two inches of soil now holds more available P than the layers below. In recent studies of farm fields across Ohio and in the western Lake Erie watershed—conducted by Heidelberg University, USDA-ARS and Ohio State University—soil test P in the top two inches is now on average 43 to 48 percent higher than in the top 8 inches, and in some farm fields it is as much as three times as high.

Director, IPNI Phosphorus Program

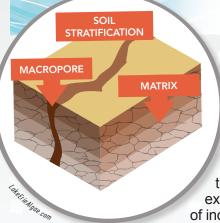
Dr. Tom Bruulsema

Why might stratification matter?

Two possible reasons: for the crop and for the environment.

For the crop, concentrating the nutrients might mean lower availability, particularly if the top layer dries out and the roots can't be active there. However, that's rarely been found to be an issue for no-till production. It's quite possible that the thicker crop residue layer improves water retention enough to allow roots to be more active near the surface. But

deeper placement can encourage deeper roots.


For the environment, however, when water leaves the field by surface runoff, its concentration of dissolved P is influenced by the availability of P in the soil to which it is exposed. The same is true for

water that reaches the tile

The top two inches of a soil core can be tested separately to assess stratification.

drains by preferential flow through macropores (cracks in clay soils, or earthworm channels) or surface inlets. Most crop fields discharge water, either directly off the soil surface, or through tile drains. Ultimately this water ends up in ponds, reservoirs and lakes. Many of these receiving waters are sensitive to increases in P concentrations and loadings, and algal blooms may result.

"Soil test stratification matters, and managing it is a key part of 'right place' in 4R Nutrient Stewardship."

So how does stratification affect P loss? For any given soil, the concentration of P in the runoff water increases with soil test P in the soil to which it is exposed. The amount of increase in loss per unit increase in soil test, however,

Soil test P at the surface affects both runoff and macropore losses.

varies considerably from soil to soil. A review of 17 runoff studies, published in 2005, found that the increase in concentration of dissolved P in runoff for each part per million increase in either the Bray P1 or Mehlich-3 P soil test ranged from 0.4 to 13 parts per billion (ppb). The most typical value, however, was around 2 ppb. It may not seem like a large increase in P loss. However, because dissolved P in drainage water from soils testing in the agronomic optimum range is often already close to a level that can support an algal bloom, small increases can matter. The effect

is chronic, not acute. The increase in dissolved P in the water leaving the field is not drastic. But the effect continues with every rainfall event. So for water quality, soil test stratification matters, and managing it is a key part of "right place" in 4R Nutrient Stewardship.

What can be done?

- 1. If you currently broadcast P fertilizer or manure in no-till or conservation tillage fields, consider ways to inject or apply in subsurface bands instead.
- Sample fields to two depths separately, 0 to 2 inches and to your typical sampling depth. Consider analyzing the shallow sample for an environmental test like P sorption, or water extractable P.
- 3. If the degree of stratification is substantial, and the soil test P level in the shallow sample markedly exceeds the optimum range, consider a tillage operation to mix all or part of the topsoil. Such a tillage operation should be done at a time of year when potential erosion or runoff events are least likely (often, late summer or early fall). Protect against soil erosion by leaving adequate crop residue cover, or plant cover crops.

ISSUE REVIEW Ref #17023

4R Phosphorus Management Practices for Major Commodity Crops of North America

Phosphorus plays a crucial role in sustainable crop production. Made from finite natural resources, phosphorus fertilizers support high and increasing crop yields, but their use can also elevate the risk for reduced water quality. Increasing the adoption of 4R phosphorus application practices—applying the right source at the right rate, right time, and right place—has great potential to improve both crop yields and water quality.

Dr. Tom Bruulsema has recently written this IPNI Issue Review paper—a science-based effort to describe such practices for five major commodity crops produced in North America.

Download your copy from http://www.ipni.net/issuereview

