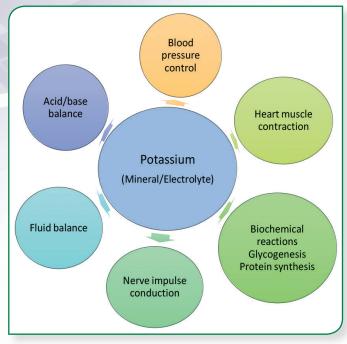


2017 ISSUE 4, NO. 7


HUMAN HEALTH IS CONNECTED TO SOIL POTASSIUM FERTILITY

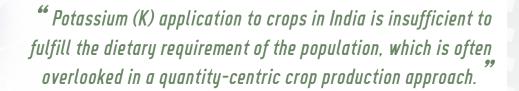
Potassium (K) plays an important and well-recognized role in human nutrition. It has physiological significance for many functions of the human body. For example, the condition called hypokalaemia refers to K deficiency due to excessive K loss caused by kidney failure, diarrhea, or insulin over production, and may result in muscle weakness, mental confusion, irregular heartbeat, and even sudden death.

Similarly, plants also need K as an essential nutrient for completing their metabolic functions. Plants with adequate K produce more harvestable products that are rich in K.

While plants depend on the soil for fulfilling their K requirement, humans in turn depend on plants for meeting their K requirement, making the soil a critical component for human wellness. It is important that K nutrition be looked at from the perspective of a complete soil-plant-human health continuum. The following evidence from India highlights this importance.

A recent estimate based on recommended dietary K intakes and the distribution of India's population indicates an annual human K requirement of 1.96 million (M) t (**Table 1**). Annual agricultural production statistics report that about 486 M t of agricultural food sources were recently available, which ensured an estimated supply of 1.24 M t K (**Table 2**). Although these calculations do not include K supplied from animal food sources.

Roles of potassium in the human body (Kotnis et al., 2017).


which are also dependent on K from the plant biomass, the difference reveals a wide gap of 0.72 M t between the K supplied from plant-based foods and the recommended dietary intake for humans.

The gap between dietary requirement and availability of K could either be achieved through greater intake of K originating from available sources of animal-based food products, or by increasing the overall quantity of food crops that are available for consumption by the Indian population. The other way of increasing dietary K supply is by sustainably intensifying food crop production through balanced and adequate K application, which can improve the K concentration of the harvested portion of fruits, vegetables, and other plant-based products.

Dr. T. Satyanarayana Director, South Asia tsatya@ipni.net

Crop production statistics also estimate total removal of K by these major crops at 8.9 M t (**Table 2**). The K removed from soil by crops needs to be returned back to the soil through fertilizer or other sources such as crop residue, manure, etc. Otherwise plants meet their additional K requirement by mining native soil reserves, thus depleting the long-term K fertility of soil. An inadequate supply of K also disrupts many physiological and

biochemical processes within the plant, hampering crop growth, productivity, and nutritional quality due to inadequate uptake and under-utilization of other essential nutrients.

Potassium application to crops in India is insufficient to fulfill the dietary requirement of the population, which is often overlooked in a quantity-centric crop production approach.

Adequate K supply to humans is

best ensured through plant food sources rich in K. Inadequate K application in crops not only promotes soil K mining, adversely affecting soil health, but also impacts the quality of life of the Indian population due to their nutritional inadequacy.

Further Reading

Kotnis, A. et al. 2017. Indian J. Fert. 13(11):16-23.

Table 1. Distribution of population by age groups and human K requirement in India.

Age group, yrs	*Population, million	**Recommended K intake, g/day	K requirement of Indian population, M t/yr	
Below 1	20	0.55	0.004	
1-3	61	3.5	0.088	
4-8	121	3.8	0.176	
9-13	130	4.5	0.215	
14-18	120	4.5	0.205	
19-30	260	4.7	0.453	
31-50	291	4.7	0.514	
Above 50	170	4.7	0.300	
Total	1,210	-	1.956	

^{*}www.censusindia.gov.in

Table 2. Totals for the production of major food crop sources, the K available for human consumption of these food sources, and the amount of K removed in harvested crop product in India.

Food crop source	Production, M t	K available for consumption, M t	Crop K removal, M t
Cereals	243	0.47	5.93
Pulses	16	0.14	0.63
Oilseeds	7.5	0.19	0.76
Fruits	79	0.15	0.71
Vegetables	139	0.29	0.87
Total	486	1.24	8.91

Source: Kotnis et al., 2017

^{**}Institute of Medicine, National Academy of Sciences, Maryland, USA.