Math Anxiety: Fertilizer Calculations

January 2011

YOU MAY KNOW people who suffer from math anxiety. They avoid situations where mathematics and calculations are required. However, avoiding math is simply not an option when working with agriculture. The International Plant Nutrition Institute (IPNI)... in cooperation with university specialists...has recently published a "how-to" workbook that presents commonly used mathematical concepts in agriculture. It begins with simple arithmetic and advances all the way to complex modeling. More details are available at the end of this newsletter.

Most of us do not use sophisticated math on a regular basis, but a review of commonly performed calculations will be the subject of this and future INSIGHTS. We'll start with some of common calculations that are made when dealing with fertilizers.

Fertilizer Notation

Commercial fertilizers are required to show on their label the minimum percentage of nutrients that the manufacturer guarantees to be present. The chemical analysis is composed of at least three numbers separated by dashes. The first number indicates the percent N , the second number indicates the percent P as $\mathrm{P}_{2} \mathrm{O}_{5}$, and the third number shows the percent K as $\mathrm{K}_{2} \mathrm{O}$ based on weight.

The nutrient content of the fertilizer is indicated by these three numbers, but the tradition of using the oxide form of P and K can be a bit confusing and is set in fertilizer law. From the percent N value on the label, it is not obvious if the N is present as nitrate, ammonium, or urea. Similarly, the P in most commercial fertilizers is chemically present as phosphate $\left(\mathrm{PO}_{4}\right)$, but this number is mathematically converted to $\mathrm{P}_{2} \mathrm{O}_{5}$ equivalents for display on the fertilizer label. Potassium fertilizers are never present as $\mathrm{K}_{2} \mathrm{O}$, but the K present in the fertilizer is mathematically

Dr. Robert Mikkelsen

Western North America Director International Plant Nutrition Institute (IPNI)
4125 Sattui Court
Merced, CA 95348
Phone: 209-725-0382
Fax: 209-725-0382
E-mail: rmikkelsen@ipni.net
Website: www.ipni.net
converted to reflect this chemical equivalent.
These conversions are done by comparing the ratios of molecular weight between them.

Converting K to $\mathrm{K}_{2} \mathrm{O} ; \mathrm{K}_{2} \mathrm{O}$ to K :

$$
\begin{array}{ll}
\mathrm{K}=39 \mathrm{~g} / \mathrm{mole} \mathrm{~K}_{2} \mathrm{O}=94 \mathrm{~g} / \mathrm{mole} & \begin{array}{l}
(39+39) / 94=0.83 \mathrm{lb} \mathrm{~K} / \mathrm{lb} \mathrm{~K}_{2} \mathrm{O} \\
94 /(39+39)=1.21 \mathrm{lb} \mathrm{~K}_{2} \mathrm{O} / \mathrm{lb} \mathrm{~K}
\end{array}
\end{array}
$$

Converting P to $\mathrm{P}_{2} \mathrm{O}_{5} ; \mathrm{P}_{2} \mathrm{O}_{5}$ to P :

$\mathrm{P}=31 \mathrm{~g} / \mathrm{mole} \mathrm{P}_{2} \mathrm{O}_{5}=142 \mathrm{~g} / \mathrm{mole} \quad(31+31) / 142=0.44 \mathrm{lb}$ P/b $\mathrm{P}_{2} \mathrm{O}_{5}$ $142 /(31+31)=2.29 \mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{lb} \mathrm{P}$

Some common questions regarding solid fertilizers can be answered with relatively simple math. Here are a few examples.

How much actual N, P, and K are contained in 200 lb of
$10-20-10$ fertilizer?
$10 \% \mathrm{~N} \times 200 \mathrm{lb}=20 \mathrm{lb} \mathrm{N}$
$20 \% \mathrm{P}_{2} \mathrm{O}_{5} \times 200 \mathrm{lb}=40 \mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5}$
$10 \% \mathrm{~K}_{2} \mathrm{O} \times 200 \mathrm{lb}=20 \mathrm{lb} \mathrm{K}$

How much fertilizer is required to replace the nutrients
removed in 5 tons of switchgrass?
One ton of harvested switchgrass removes $22 \mathrm{lb} \mathrm{N}, 5 \mathrm{lb} \mathrm{P}$, and 48 lb K
Nitrogen:
$22 \mathrm{lb} \mathrm{N} /$ ton $\times 5$ ton $=110 \mathrm{lb} \mathrm{N}$ removed
Phosphorus:
5 lb P/ton $\times 5$ ton $=25 \mathrm{lb} \mathrm{P} \rightarrow$
then convert P to $\mathrm{P}_{2} \mathrm{O}_{5} \rightarrow 25 \mathrm{lb} \mathrm{P} \times 2.29 \mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{lb} \mathrm{P}=57 \mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5}$
Potassium:
$48 \mathrm{lb} \mathrm{K} /$ ton $\times 5$ ton $=240 \mathrm{lb} \mathrm{K} \rightarrow$
then convert K to $\mathrm{K}_{2} \mathrm{O} \rightarrow 240 \mathrm{lb} \mathrm{K} \times 1.21 \mathrm{lb} \mathrm{K}_{2} \mathrm{O} / \mathrm{lb} \mathrm{K}=290 \mathrm{lb} \mathrm{K}_{2} \mathrm{O}$

> What is the nutrient content of a blend of 50 lb of 11-52-0 (MAP) and $50 \mathrm{lb} 13-0-44\left(\mathrm{KNO}_{3}\right)$?

In the final blend, the 50 lb of MAP will contribute 5.5 lb N and 26 lb $\mathrm{P}_{2} \mathrm{O}_{5}$. The 50 lb of KNO_{3} will contribute 6.5 lb N and $22 \mathrm{lb} \mathrm{K}_{2} \mathrm{O}$.
The final 100 lb blend will contain $12 \mathrm{lb} \mathrm{N}, 26 \mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5}$ and $22 \mathrm{lb} \mathrm{K}_{2} \mathrm{O}$.
The composition of the fertilizer blend will be 12-26-22.
How much fertilizer material is needed for a $50 \mathrm{lb} \mathrm{N} / \mathrm{A}$ preplant application on 6 acres using urea as the \mathbf{N} source? (Fertilizer analysis for urea is 46-0-0).
$50 \mathrm{lb} \mathrm{N} / \mathrm{A} \times 6 \mathrm{~A} \times 1 \mathrm{lb}$ urea/ $0.46 \mathrm{lb} \mathrm{N}=652 \mathrm{lb}$ urea required for the 6 acres

Liquid Fertilizers

Liquid fertilizers are labeled based on the nutrient content in 100 lb of material. These values are calculated the same as with dry fertilizers. However, fluid fertilizers are commonly applied based on their volume (gallons of material) instead of their weight. Converting from a weight of liquid (pounds or tons) to a volume (gallons) requires knowledge of the liquid density. Density is defined as the mass of material divided by the volume.

For example, if a 5 gal bucket of fluid fertilizer weighs 60 lb , the density is $60 \mathrm{lb} / 5 \mathrm{gal}=12 \mathrm{lb} / \mathrm{gal}$. It is important to precisely measure both the volume of the container and the weight of the added fertilizer (without including the weight of the container).

A complicating factor in determining fertilizer density is that most liquids become more dense in cold temperatures and less dense (expand) in warm temperatures. Luckily, these differences are relatively minor at the temperature range of most agronomic operations.

How many pounds of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$, and $\mathrm{K}_{2} \mathrm{O}$ in 200 gal of am-
monium polyphosphate $(10-34-0$) fluid fertilizer? (use a
density of $11.65 \mathrm{lb} / \mathrm{gal}$)
$200 \mathrm{gal} \times 11.65 \mathrm{lb} / \mathrm{gal}=2,330 \mathrm{lb}$ fertilizer
$2,330 \mathrm{lb} \times 10 \% \mathrm{~N}=233 \mathrm{lb} \mathrm{N}$
$2,330 \mathrm{lb} \times 34 \% \mathrm{P}_{2} \mathrm{O}_{5}=792 \mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5} ;$ No $\mathrm{K}_{2} \mathrm{O}$ present.

How much \mathbf{N} is present in 250 gal of UAN liquid fertilizer (32-0-0) at $40^{\circ} \mathrm{F}$ compared to $80^{\circ} \mathrm{F}$?
Note: the density is $11.12 \mathrm{lb} / \mathrm{gal}$ at $40^{\circ} \mathrm{F}$ and $10.99 \mathrm{lb} / \mathrm{gal}$ at $80^{\circ} \mathrm{F}$.
$40^{\circ} \mathrm{F}: 250 \mathrm{gal} \times 11.12 \mathrm{lb} / \mathrm{gal}=2,780 \mathrm{lb} ; 2,780 \mathrm{lb} \times 32 \% \mathrm{~N}=890 \mathrm{lb} \mathrm{N}$ $80^{\circ} \mathrm{F}: 250 \mathrm{gal} \times 10.99 \mathrm{lb} / \mathrm{gal}=2,747.5 \mathrm{lb} ; 2,747.5 \mathrm{lb} \times 32 \% \mathrm{~N}=880 \mathrm{lb} \mathrm{N}$
(This 32.5 lb change in the weight of UAN represents a 1% change in density when the temperature is corrected.)

The density of a liquid is measured by floating a hydrometer in the material. This instrument provides a measurement of "specific gravity", which is the ratio of the fertilizer density and water density. Once the temperaturecorrected density of water is known, the density of the fluid fertilizer can be calculated. There are also published tables available that show these density coefficients for various fluid fertilizers.

> How many pounds of $\mathrm{K}_{2} \mathrm{O}$ are present in 1 ton of liquid potassium thiosulfate $(0-0-25)$? How many gallons? (use a density of $12.2 \mathrm{lb} / \mathrm{gal}$)

1. One ton of liquid is $2,000 \mathrm{lb} ; 2,000 \times 25 \% \mathrm{~K}_{2} \mathrm{O}=500 \mathrm{lb} \mathrm{K}_{2} \mathrm{O}$
2. $2,000 \mathrm{lb} \times 1 \mathrm{gal} / 12.2 \mathrm{lb}=164 \mathrm{gal}$

How much fertilizer should I apply?

To determine the amount of dry fertilizer to apply, the nutrient recommendation (usually given in lb / A) and the nutrient content of the fertilizer must be known.

How much DAP fertilizer (18-46-0) should be added for a fertilizer recommendation of $70 \mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{A}$?
$70 \mathrm{lb} \mathrm{P}_{2} \mathrm{O}_{5} \times 100 \mathrm{lb}$ DAP/46 lb $\mathrm{P}_{2} \mathrm{O}_{5}=152 \mathrm{lb}$ DAP
Since DAP contains $18 \% \mathrm{~N}$, the 152 lb DAP will also provide 27 lb N (152×0.18)

Calculating the quantity of fluid fertilizer to apply may require an additional step to convert the weight of the fertilizer to gallons of product delivered to the field.

How many gallons of UAN (28-0-0) are required to supply 150 lb N ? (use a density of $10.7 \mathrm{lb} / \mathrm{gal}$)

1. $150 \mathrm{lb} N \times 1 \mathrm{lb}$ UAN/ $0.28 \mathrm{lb} \mathrm{N}=536 \mathrm{lb}$ UAN
2. 536 lb UAN $\times 1 \mathrm{gal} / 10.7 \mathrm{lb}=50 \mathrm{gal}$

How much does it cost?

Fertilizer prices are usually provided in costs per ton ($2,000 \mathrm{lb}$) of material. Fertilizer prices are occasionally given in price per pound of $\mathrm{N}, \mathrm{P}_{2} \mathrm{O}_{5}$, or $\mathrm{K}_{2} \mathrm{O}$ and not as a specific fertilizer product. The "per pound" terminology is sometimes referred to as a "unit". Without close attention, this difference in pricing and terminology can be confusing.

> If N fertilizer is sold at $\$ 0.65 / \mathrm{lb}$, what is the price per ton of urea ($46-0-0)$? What is the price per ton of ammonium sulfate (AS, 21-0-0-24)?

1. $\$ 0.65 / \mathrm{lb} \mathrm{N} \times 0.46 \mathrm{lb} \mathrm{N} / \mathrm{lb}$ urea $=\$ 0.30 / \mathrm{lb}$ urea
$\$ 0.30 / \mathrm{lb}$ urea $\times 2,000 \mathrm{lb} /$ ton $=\$ 600 /$ ton
2. $\$ 0.65 / \mathrm{lb} \mathrm{N} \times 0.21 \mathrm{lb} \mathrm{N} / \mathrm{lb} \mathrm{AS}=\$ 0.14 / \mathrm{lb} \mathrm{AS}$
$\$ 0.14 / \mathrm{lb}$ AS $\times 2,000 \mathrm{lb} /$ ton $=\$ 280 /$ ton
What is the price of a pound of N if a ton of UAN (32-0-0) costs $\$ 500$? What is the cost of N in one gal of UAN? (use a density of $11 \mathrm{lb} / \mathrm{gal}$)
3. $2,000 \mathrm{lb}$ UAN $\times 0.32 \mathrm{lb} \mathrm{N} / \mathrm{lb}$ UAN $=640 \mathrm{lb} \mathrm{N} \rightarrow \$ 500 / 640 \mathrm{lb} \mathrm{N}=$ \$0.78/lb N
4. $2,000 \mathrm{lb}$ UAN $\times 1 \mathrm{gal} / 11 \mathrm{lb}=181.8 \mathrm{gal} \rightarrow 640 \mathrm{lb} \mathrm{N} / 181.8 \mathrm{gal}=$ $3.5 \mathrm{lb} \mathrm{N} / \mathrm{gal}$
$3.5 \mathrm{lb} \mathrm{N} / \mathrm{gal} \times \$ 0.78 / \mathrm{lb} \mathrm{N}=\$ 2.73 / \mathrm{gal}$

Mathematics and Calculations for Agronomists and Soil Scientists
 A Guide to Converting BiologicallyBased Data into Economically and Scientifically-Based Practical Solutions

The overall goal of this manual is to teach individuals, whether students or working professional, how to propose, test, and implement innovative strategies that increase productivity while also protecting the environment.
The publication page size is $81 / 2 \times 11$, with wire-o binding, so pages lie flat when opened.

For order information, contact: circulation@ipni.net or 770-825-8082

