
Agronomic recommendations are usual-
ly designed to provide good results
under average conditions over a rela-

tively large geographic area. Nutrient recom-
mendations, for example, are commonly tar-
geted for an average soil and management sys-
tem and are applied for gen-
eral soil types across a whole
state, or even across multiple
states. Variety recommenda-
tions are usually made for
average conditions over a
large area and multiple years.
Pesticide recommendations
likewise are usually the same
for large areas. 

Site-specific manage-
ment, on the other hand,
should focus on the unique
characteristics of the field,
the soil types, and the management system. It
is through managing specifically for those
unique characteristics that the
value of site-specific systems
can be realized. In changing
one component, we affect the
optimums for others. In under-
standing those interactions and
how to manage them we find
the real value of site-specific
management. Responding to
those interactions, paying
attention to details of the sys-
tem, is the key to profitable
implementation of site-specific
management. Successful action
begins with field assessment
that focuses on the spatial and
temporal differences in man-

ageable production components instead of on
the production uniformities. 

When studying and managing several
varying factors, as is usually the situation in
crop and soil management, it is important to
look not only at which factors vary, but also at

whether their variability is
independent or linked to
another factor. If the variabil-
ities of certain factors are
linked, then their measure-
ment and management may
be more efficiently handled
by using one as a predictor, or
surrogate, for the variability
in the other. If there is no
relationship between the
variances of two factors, then
they should be assessed sep-
arately and may require inde-

pendent management.
Studies at the Purdue University Davis
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Evaluating Spatial Variability of Soil
Parameters for Input Management
By Sylvie Brouder, Brenda Hofmann, and Harold F. Reetz, Jr.

Crop production is affected
by factors that vary both in
space (spatial variability)
and time (temporal variabil-
ity). Site-specific crop and
soil management systems
apply agronomic science to
manage production prac-
tices and inputs to address
spatial and temporal vari-
ability on the farm.
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Figure 1. Two adjacent 35-acre fields are being intensively 
sampled to characterize soil and plant variability. 
Numbered points mark locations of soil samples 
collected on a 0.5-acre grid intensity.
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Research Center in east central Indiana are
focusing on analysis of the spatial structure of
soil nutrient availability and its relationship to
plant nutrient status, nutrient export, and on
the spatial and temporal stability of yield and
yield variability.

In order to study spatial variation in soil
test values a stratified, systematic, unaligned
pattern imposed on a 0.5-acre grid was used to
select the point sample locations, and multiple
core composites were collected (Figure 1).
Several approaches are being used to analyze
these data. Common interpolation techniques
such as kriging are being used to characterize
the sampling intensity needed to adequately
describe expected soil test values at unsam-
pled locations. Moving window analysis, a
very simple statistical technique, is being
used to explore whether manageable soil prop-
erties such as phosphorus (P), potassium (K),
and pH vary spatially in such a way as to per-
mit their joint management. 

For this analysis, fields were divided into
32 overlapping five-acre local neighborhoods,
each containing nine to 13 soil-sampling
points (Figure 2). The analysis in the vari-
ability of means of the sampling points as you
move across the landscape identifies the spa-
tial variability of the individual factors. The
analysis of variability in the standard devia-
tions, on the other hand, helps determine
whether these variations are related or are
independent.

Conclusions from the preliminary analy-

sis of the soils data underscore the need to be
able to integrate information from other data
layers such as crop performance into smarter
sampling strategies. Specifically:
1. Descriptive univariate statistics indicate

substantial within-field variability in
input needs that would be overlooked in a
whole field approach to management. For
example, the mean soil pH across the
field is 6.5, requiring no lime additions.
However, point soil test values range from
5.0 to 7.9. 

2. Results of kriging and cross validation
show that the 0.5-acre sampling grid may
be too sparse to adequately characterize
the structure of spatial variability of
selected soil parameters. Table 1 gives
the results the semivariance analysis
used to find the best models to describe
the spatial structure of selected soil prop-
erties. Our results show that, while mod-
els can be fit to our data, the models’ abil-
ities to predict the soil test values at
untested locations within the field are not
very good. For example, sample locations
for P must be closer together than 130 ft.
(range = 130 ft.) in order to be dependent
(to be able to predict something about the
soil test value at one location simply by
knowing the soil test value at the neigh-
boring location). The model cross valida-
tion shows how well we can predict the
soil test value at any sample point from all
the other sample points. A model that

Figure 2. Overlapping moving windows were used to calculate 
moving average statistics (means and standard devia-
tions) for five-acre regions of the field. Each moving
window contained 9 to 13 soil sample grid points 
(yellow dots).

predicts the right value at
every single location 
would have a regression
coefficient (slope) of 1.0,
an r2 of 1.0 and a Y-inter-
cept of 0. Y intercepts
greater than 0 and regres-
sion coefficients less than 
1 indicate that the model
tends to over predict lower
soil test values and under
predict higher ones. 

3. The spatial analysis of the
five-acre moving window
means and standard devia-
tions for various parame-
ters shows that P and K



change together in space, and that
regions of high variability in soil test P
are also highly variable in soil test K
(Tables 2 and 3). Regions of greatest 
and least variability in organic matter
(OM), cation exchange capacity (CEC),
calcium (Ca), and magnesium (Mg) were
different from the regions of extreme P
and K variability. Therefore, in this field,
there is the potential to monitor and man-
age P and K together, but their spatial
variability does not match that of OM,
CEC, Ca or Mg. Thus, P and K should be
considered independent of those para-
meters. A smart sampling strategy that
minimizes the total number of soil sam-
ples collected while still successfully
characterizing zones of uniformity in P
and K availability and fertilizer need
would not necessarily be optimal for the
identification of the spatial variability in
OM, a soil property that may be required
for the development of optimal variable
rate (VR) nitrogen (N) recommendations.

The relationships among different soil

test parameters, like those determined in this
study, will likely vary geographically due to
differences in soil physical properties, man-
agement history, climate, and other factors.
The spatial variability of common soil test fac-
tors measured in this study shows that current
sampling patterns do not provide sufficient
information to accurately draw soil test vari-
ability maps. Because sampling densities
needed to provide such accuracy are imprac-
tical and cost-prohibitive, other tools are
needed to refine soil-sampling procedures for
accurate representation and management
decisions on VR nutrient application. More
intense data sets are needed from remote
sensing, soil electrical conductivity, yield
monitors, and other more data-intense, lower-
cost measurements of within-field variability.
These measurements can help define manage-
ment zones, which can be combined with 
less-dense soil samples to provide a more
accurate prediction of spatial variability of soil
nutrient levels.

To date, much of the effort in site-specif-
ic management has been focused on P and K
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TABLE 1. Semivariance analysis of selected soil properties.
Isotropic model Cross validation of model

Range Effective Regression S.E. of
A0, range, Proportion coeff. Y produc-

Parameter Model ft. ft. C/C0 + C1 r2 (S.E.) r2 intercept tion

Bray P-1, Exponential 130 394 0.94 0.88 0.82 0.13 10.3 18.0
ppm2 (0.19)

K, ppm Spherical 269 269 0.999 0.78 0.67 0.10 47.5 29.3
(0.60)

OM, % Exponential 194 577 0.999 0.95 0.79 0.25 0.77 0.69
(0.12)

pH Spherical 148 148 1.0 0.45 0.78 0.10 1.4 0.55
(0.20)

1C0, nugget; C, sill; 2ppm = parts per million.

TABLE 2. Spearman Rank correlation (p-value) for selected soil properties. Comparisons are 
between area means of “moving windows.”

OM Bray P-1 K Mg Ca pH

Bray P-1 0.41(*)
K 0.39(*) 0.90(***)
Mg 0.46(*) 0.02(n.s.) -0.03(n.s.)
Ca 0.62(***) 0.17(n.s.) 0.29(n.s.) 0.77(***)
pH 0.81(***) 0.05(n.s.) -0.02(n.s.) 0.71(***) 0.55(**)
CEC 0.81(***) 0.29(n.s.) 0.41(*) 0.60(***) 0.90(***) 0.25(n.s.)

*, **, *** = significant at the 0.05, 0.01, and 0.001 levels, respectively.
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management and on liming, because variabil-
ity in those components was measurable and
technology for VR application was available. 

The most cost-effective approach
for inputs such as P, K and lime is still to
build them to a level where they are not
limiting. But with site-specific systems,
that level can be determined for each
management zone (or grid cell) within
each field, based on the characteristics
and productive potential of that individ-
ual zone. If the field has been well-managed
under conventional systems, shifting to site-
specific management will likely reduce the
fertilizer application for parts of the field and
increase it for others, but will usually increase
the total fertilizer application and should

generate an increase in yield potential.
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Hofmann is M.Sc. student and research technician,
Department of Agronomy, Purdue University, West
Lafayette, Indiana; e-mail: sbrouder@purdue.edu.
Dr. Reetz is PPI Midwest Director, located at
Monticello, Illinois; e-mail: hreetz@ppi-far.org.

This project is part of a 15-state multi-disciplinary,
site-specific soybean-corn systems research and edu-
cation program, coordinated by the Foundation for
Agronomic Research (FAR), with initial funding
from the United Soybean Board and supplemental
funding from numerous industry, university, and
government sources.

TABLE 3. Spearman Rank correlation (p-value) for the standard deviations of selected soil proper-
ties. Comparisons are between standard deviation of area means of “moving windows.”

StdD-OM StdD-Bray P1 StdD-K StdD-Mg StdD-Ca StdD-pH

StdD-Bray P-1 0.13(n.s.)
StdD-K -0.08(n.s.) 0.51(**)
StdD-Mg 0.34(n.s.) -0.07(n.s.) 0.05(n.s.)
StdD-Ca 0.44(*) 0.12(n.s.) 0.35(n.s.) 0.71(***)
StdD-pH -0.11(n.s.) 0.55(**) 0.40(*) 0.10(n.s.) 0.11(n.s.)
StdD-CEC 0.66(***) 0.04(n.s.) 0.22(n.s.) 0.66(***) 0.86(***) -0.10(n.s.)

*, **, *** = significant at the 0.05, 0.01, and 0.001 levels, respectively.

Assuming soybean prices of $5.00/bu and
$0.30/lb N, these results would show a
return of $35.00 per acre for a $6.00 per
acre investment in 20 lb N. 

TABLE 3. Effect of late-season N rate and source on irrigated soybean yield.
N rate, N Grain yield, bu/A
lb/A source JO94 JO95 SN94 SN95 RN94 RN95 SF94 SF95 Avg.

0 – 64 58 72 57 56 58 35 43 55
20 UAN 70 62 76 62 75 66 39 47 62
40 UAN 65 56 73 60 59 73 37 41 58
20 AN 64 66 78 64 61 71 38 47 61
40 AN 69 66 76 69 61 66 35 44 61
20 Urea 67 63 76 65 69 76 37 48 63
40 Urea 70 69 74 68 67 68 43 51 64
20 Urea + NBPT 64 63 79 65 82 72 41 46 64
40 Urea + NBPT 70 70 83 70 67 67 42 48 65

LSD(0.10) 5 5 7 4 11 9 NS NS 6

Dr. Lamond is Professor, Soil Fertility Extension,
(e-mail: rlamond@bear.agron.ksu.edu) and Mr.
Wesley is former graduate student, Department of
Agronomy, Kansas State University, Manhattan,
KS 66506.
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