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Abbreviations and notes for this article: N = nitrogen; OM = organic matter.

NORTH AMERICA

Improving Mid-Season Nitrogen 
Recommendations for Winter Wheat Using 
Soil Moisture Data
By Olga Walsh, Yumiko Kanke, D.E. Edmonds, and W.R. Raun

Nitrogen sensor technology has significantly advanced the understanding of site-specific 
N management in crop production. Combining sensor information with other important 
yield affecting data has the potential to further improve the capabilities of this technology. 
Scientists at Oklahoma State University (OSU) are developing means of incorporating soil 
moisture into winter wheat yield potential determinations, and ultimately N management 
decisions. 

Soil water availability and fertility status are among the 
major factors limiting crop production worldwide. Soil 
moisture (SM) is the amount of water that is contained 

within the soil pores, and it is a key factor affecting yield. 
Establishment of automated, high-density SM networks of-

fers effective technology to generate high-quality SM data sets. 
Recognizing the importance of SM for agriculture and other 
disciplines, numerous research institutions across the USA 
are dedicated to collecting and managing SM information. The 
Climate Prediction Center of the National Weather Center data-
base (http://www.cpc.ncep.noaa.gov/), the Automated Weather 
Data Network of the High Plains Regional Climate Center in 
Nebraska (http://www.hprcc.unl.edu), and the Illinois State 
Water Survey (http://www.sws.uiuc.edu/warm/) are examples 
of such automated networks that offer climatological data on 
temperature, precipitation, and SM for the USA.

The Oklahoma Climatological Survey’s Oklahoma Mesonet 
(OM) (Brock et al., 1995) is an automated statewide network 
designed to measure the environment at the size and duration 
of mesoscale weather events. Soil moisture data at four depths 
– 2 in., 10 in., 24 in., and 30 in. (5, 25, 60, and 75 cm) – are 
collected every 10 minutes at over 100 remote meteorological 
stations. Data are available at the OM website:  >http://www.
mesonet.org/<.

Many authors proposed that accurate SM information could 
be vital for estimating crop yield potential (YP) and making 
fertilizer recommendations. Carlson et al. (1995) noted that 
lack of homogeneity in soil water content is apparent and indi-
cates the need for evaluation of factors affecting SM spatial and 
temporal variability. Gillies et al. (1997) also stated that know-
ing soil water content is important when evaluating crop YP 
mid-season. It is not unusual for SM levels to vary signifi cantly 
both site-to-site and year-to-year. Thus, spatial and temporal 
variability in SM should be accounted for when estimating YP 
and making fertilizer recommendations. Results by Kumar et 
al. (2006) illustrated that YP estimates could be improved 
using Normalized Difference Vegetative Index (NDVI) data 
combined with SM data in a grain sorghum experiment.

Sensor-Based N Rate Calculator
The Sensor-Based Nitrogen Rate Calculator (SBNRC), 

developed at OSU, is an on-line tool available at the N use ef-
fi ciency (NUE) website: >http://nue.okstate.edu/<. The SBNRC 
enables producers to estimate in-season YP, and to determine 

optimum N fertilization application rates based on predicted 
YP and crop responsiveness. The SBNRC entails using 
GreenSeeker™ technology to measure crop canopy refl ectance 
and calculate NDVI. Canopy refl ectance readings are collected 
mid-season (Feekes 5 growth stage for winter wheat). The sen-
sor is designed to illuminate the light in both red (650nm) and 
NIR (770nm) bands and to register the fraction of the emitted 
light returned from the canopy to the sensor. NDVI is highly 
correlated with plant vigor, leaf chlorophyll content, and plant 
N status. Response Index (RI) is determined by comparing the 
NDVI values from the representative area within a fi eld to the 
NDVI values obtained from an N-rich strip (NRS) (Mullen et 
al., 2003). The NRS is simply a strip within a fi eld to which 
N fertilizer was applied to create a non-limiting environment. 
Comparing the NDVI’s from non-limiting NRS to the NDVI’s 
from the rest of the fi eld provides valuable information about 
the crop’s N status and helps to make a decision about how 
much, if any, fertilizer N must be applied to satisfy crop needs. 
In-Season Estimated Yield (INSEY) is calculated as NDVI 
(Feekes 5) divided by growing degree days (GDD)>0 (Lukina 
et al., 2001; Raun et al., 2001). The INSEY index serves as 
an indicator of the rate of plant N uptake (Raun et al., 2002). 
Using NDVI allows accounting for spatial and temporal vari-
ability existing within the fi eld. 

Soil Moisture and SBNRC
The soil fertility group at OSU is currently striving to 

further refi ne the winter wheat algorithm for SBNRC by in-
corporating SM at the time of sensing into the algorithm. At-

On-line view of Sensor Based Nitrogen Rate Calculator (SBNRC) available 
at >www.nue.okstate.edu<.
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sensing knowledge of the amount of water present in the soil 
profi le will help to more accurately predict YP. This should in 
turn improve N recommendations. 

Statistical analysis was carried out to assess the value of 
SM data in YP estimation. Simple correlation analysis between 
24 variables, including SM, NDVI*SM, INSEY*SM, and wheat 
grain yield were performed using yield data from long-term 
OSU experiments near Lahoma and Stillwater, Oklahoma, and 
SM data provided by the OM. The SM values at sensing, and a 
month average SM around sensing date at four depths (2, 10, 
24 and 30 in.) were used in the analysis.

Results showed that SM at sensing and a month average 
SM around sensing date were generally highly correlated (p 
< 0.001) with grain yield at both sites. At Lahoma, 17 of 24 
variables (excluding SM at sensing at 10, 24, and 30 in., and 
a month average SM around sensing date at all four depths) 
were signifi cantly correlated with grain yield (p < 0.001). While 
there was no relationship observed between grain yield and 
the variables refl ecting only SM at this site, all the variables 
combining both vegetative and SM characteristics (NDVI*SM 
and INSEY*SM) were signifi cantly correlated (P < 0.001) with 
yield. At Stillwater, 22 of total 24 variables (excluding a month 
average SM around sensing date at 24 and 30 in. depths) were 
signifi cantly correlated with wheat yield (p < 0.001). Trend 
analysis showed that higher correlation values (R2) were gen-
erally observed with combination of indices (NDVI*SM and 
INSEY*SM) compared to NDVI and INSEY alone (Figures 1 
and 2), suggesting that indices that combine both SM and the 
vegetative crop characteristics could help to more accurately 
estimate winter wheat YP. 

Figure 2. In-Season Estimated Yield (INSEY) (a, top) and INSEY*SM 
at 10 in. (b, bottom) as a predictor of winter wheat grain 
yield at Stillwater, Oklahoma (2001-2006).

Figure 1. Normalized Difference Vegetative Index (NDVI) (a, top) 
and NDVI*SM at 2 in. (b, bottom) as a predictor of winter 
wheat grain yield at Stillwater, Oklahoma (2001-2006).

Our SBNRC approach makes fertilizer N recommendations 
based on crop YP, thus increasing the accuracy of the YP 
estimation. Using SM data has the potential to substantially 
improve N recommendations and management decisions. BCBC

Author Information
Ms. Walsh (e-mail: olga.walsh@okstate.edu) and Mr. Kanke (e-mail: 
yumiko.kanke10@okstate.edu) are graduate students, Mr. Edmonds 
(e-mail: dedmond@okstate.edu) is Soil Fertility Graduate Research 
Assistant, and Dr. Raun (e-mail: bill.raun@okstate.edu) is Regents 
Professor, Department of Plant and Soil Sciences, Oklahoma State 
University, Stillwater.

References
Brock, F.V., K.C. Crawford, R.L. Elliott, G.W. Cuperus, S.J. Stadler, H.L. John-

son, and M.D. Eilts. 1995. J. of  Atmos. and Oceanic Tech., 12: 5-19.
Carlson, T.N., R.R. Gillies, and T.J. Schmugge. 1995. No. Ag. and Forest Me-

teorol. 77:191-205.
Gillies R.R., W.P. Kustas, and K.S. Humes. 1997. Int. J. of  Remote Sens. Vol. 

18(15): 3145 – 3166. 
Kumar, M.U., U.S. Victor, N.N. Srivastava, K.L. Sharma, V. Ramesh, M. Vanaja, 

G.R. Korwar, and Y.S. Ramakrishna. 2006. In Agriculture and Hydrology 
Applications of  Remote Sensing. Ed. by Kuligowski R., J. Robert, J.S. 
Parihar, G. Saito. Proceedings of  the SPIE, Vol.6411, pp. 64110B.

Lukina, E.V., et al. 2001. J. Plant Nutr. 24:885–898.
Mullen, R.W., K.W. Freeman, W.R. Raun, G.V. Johnson, M.L. Stone, and J.B. 

Solie. 2003. Agron. J. 95:347-351.
Raun, W.R., G.V. Johnson, M.L. Stone, J.B. Solie, E.V. Lukina, W.E. Thomason, 

and J.S. Schepers. 2001. Agron. J. 93:131–138.
Raun, W.R., et al. 2002. Agron. J. 94:815-20.

y = 53.741x1.2627

 R2 = 0.45 

0
5

10
15
20
25
30
35
40
45
50

0.3 0.4 0.5 0.6 0.7 0.8 0.9

G
ra

in
 y

ie
ld

, b
u/

A

NDVI

y = 224.83x1.1658

 R2 = 0.62 
0
5

10
15
20
25
30
35
40
45
50

0.05 0.1 0.15 0.2 0.25 0.3

NDVI*SM at 2 in. 

G
ra

in
 y

ie
ld

, b
u/

A
Figure 1a

Figure 1b

y = 9412.9x1.1478

 R2 = 0.47 

0
5

10
15
20
25
30
35
40
45
50

0.004 0.005 0.006 0.007 0.008 0.009

INSEY

y = 47218x1.1759

R2 = 0.64 

0
5

10
15
20
25
30
35
40
45
50

0.0005 0.001 0.0015 0.002 0.0025 0.003

G
ra

in
 y

ie
ld

, b
u/

A

INSEY*SM at 10 in. 

G
ra

in
 y

ie
ld

, b
u/

A

Figure 2a

Figure 2b


