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Global positioning satellites and 
associated technology have made 
variable rate technology (VRT) 

applications of fertilizer easier to perform. 
We can accurately record locations of data 
gathered from fields and then differentially 
treat areas of those fields. 
When correctly used, VRT 
increases fertilizer efficien­
cy. The fertilizer is applied 
where it is needed and at 
the proper rate. 

An accurate map is 
needed for VRT fertilizer 
application. The map must indicate the 
real varying fertility levels of the field. 
Experience has taught us that this is 
much easier said than done and that in 
fact many maps used currently probably 
are not accurate and do not portray the 
actual fertility levels of the fields they rep­
resent. We are not suggesting that VRT 
does not work. Rather we are suggesting 
that i f VRT is to work, then accurate maps 
must be produced. 

To collect information for fertility 
maps, soil samples are collected — usual­
ly on some regular grid interval. In 
Illinois and much of the central Midwest 
this is a 330 ft. grid (2.5 acres). Maps are 
then produced with an implicit assump­
tion that point samples from adjacent 
areas are representative of those areas 
and/or are correlated to adjacent and 
nearby sample points. It is assumed that 
when several samples of similar value 
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(e.g. low Bray P- l test) are clustered 
together in an area, that portion 
of the field has a low Bray P- l value. 
The assumption may or may not be 
true. Certainly a cautious approach 
is warranted. 

It should be understood 
that for any given field, 
similar soil samples can 
cluster together randomly 
and not be indicative of 
uniformity in a particular 
area of the field. For exam­
ple, i f two copies of the 

numbers one through fifty (100 pieces of 
paper) were put into a hat and drawn out 
one at a time, it would not be surprising i f 
one were occasionally to sequentially 
draw out from the hat several numbers 
that are numerically similar (e.g., 46, 48, 
and 53). The problem is made even worse 
because most individuals wil l categorize 
such quantitative results into a small 
number of discrete intervals such as low, 
medium, and high. This results in an 
almost certain occurrence of a clustering 
of categories. Again it should be stressed 
that in this case the clustering would not 
be indicative of a true fertility area in the 
field. Rather it is a random, but anticipat­
ed, clustering. 

An Example 
Although taking soil tests is not draw­

ing numbers from a hat, we performed a 
soil test simulation in the spirit of drawing 
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numbers. Using the distribution (lognor-
mal), mean (61.5), and variance (927) of 
an actual 80 acre research field, we pro­
duced a random data set on a 20 ft. grid 
(8,192 points) for a Bray P- l test. Note 
that in this case the samples were gener­
ated randomly and are not correlated. 
Thus, the value of any given point gives 
absolutely no information regarding the 
value of an adjacent or nearby point. We 
then came back into this random data set 
and simulated the current standard 330 ft. 
(2.5 acre) sampling grid (Figure 1 ) and a 
165 ft. (0.65 acre) sample grid (Figure 
2). Clustering of varying fertility cate­
gories is evident in both. The clusters are 
indicative of nothing other than a 
random event. 

It is critical to understand two major 
issues. First, the single measure for a 
given block, either the 2.5 acre (Figure 
1 ) or the 0.65 acre (Figure 2) is not rep­
resentative of the entire block although 
many would assume it to be. Second, the 
information obtained from a single point 
sample tells us nothing about nearby 

8 0 a c r e f ie ld 
s imula ted for 
2 . 5 a c r e 
( 3 3 0 ft.) gr id 

• Above 65 (High) 27.2 acres 
I 45-65 (Maintenance) 30.1 acres 
• Below 45 (Buildup) 22.7 acres 

FIGURE 1. Field simulation of soil test P distrib­

ution using random numbers, 

330 ft. grid. 

points. This second critical issue is 
absolutely true for this data set because it 
is random, but it is also true for actual 
field data i f the sampling grid results in 
uncorrelated samples because they were 
taken at a distance greater than the range 
of correlation. 

The range of correlation can and 
should be tested with geostatistical tech­
niques, but commonly is not tested. 
Rather, an inverse distance interpolation 
is performed by most mapping programs 
and this assumes that real samples are 
correlated and that a weighted average of 
surrounding samples can be used to esti­
mate any point that is not sampled. 

This technique assumes that the sim­
ilarity of points depends on the distance 
that separates them. Thus, the weights are 
proportional to the inverse of the distance 
(1/d), and the samples that are farther 
away are given less weight individually. 
Inverse distance squared (1/d2), cubed 
(1/d3), and to the fourth power (1/d4), are 
also used. In these cases, distant samples 
are given even less weight than in inverse 

8 0 a c r e f ie ld 
s imula ted for 
0 . 6 5 a c r e 
(165 ft.) gr id 

• Above 65 (High) 30.2 acres 
I 45-65 (Maintenance) 23.8 acres 
• Below 45 (Buildup) 25.9 acres 

FIGURE 2. Field simulation of soil test P distrib­

ution using random numbers, 

165 ft. grid. 
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distance, and the nearest samples are 
given most of the weight. 

For example, given a 100 ft. interval, 
and a point to be estimated halfway 
between two samples, the closest samples 
would have weights proportional to 1/50, 
and the next 1/150, i f inverse distance 
(1/d) is used. I f 1/d2 is used, the weights 
would be proportional to 1/502 (1/2,500) 
and 1/1502 (1/22,500). Thus, with inverse 
distance, the nearer samples would be 
weighted three times more than the far­
ther samples. With inverse distance 
squared, the weights would be nine times 
greater, with inverse distance cubed, 
twenty-seven times greater. For 1/d3 or 
1/d4, only the very nearest points are 
included in the estimate. This has the 
effect of simply drawing lines around all 
areas of similar soil test values. I f the field 
is highly variable, very small areas are 
defined. Additionally, current algorithms 
wil l consider issues such as the number of 
neighbors and/or a minimum distance. 

We used such a technique with the 
results of our generated random data set to 
produce soil fertility maps of the 330 ft . 
grid (1/d) (Figure 3); 165 ft . grid (1/d) 

8 0 a c r e f ie ld 
s i m u l a t e d for 
r a n d o m 
3 3 0 ft. 1/d 

• Above 65 (High) 36.5 acres 
I 45-65 (Maintenance) 36.6 acres 
• Below 45 (Buildup) 7.0 acres 

FIGURE 3. Field simulation of soil test P distrib­

ution, 330 ft. grid, inverse distance 

weighting. 

(Figure 4) and 165 ft . grid (1/d3) (Figure 
5). The first two examples using the 
inverse distance produced convincing, i f 
not similar maps. The last example, using 
the inverse distance cubed, produced a 
seemingly overly detailed map. 

While the first two maps, in particu­
lar, look reasonable and fit well with our 
expectations for soil fertility variation, 
they are not correct and represent nothing 
other than a random clustering of values 
and the ingenuity of the programmers that 
developed the mapping software. We 
should note that such an endeavor pre­
dicts certain values for non-sampled 
points based on nearby points, but in fact 
the predictions are worthless in this case. 
I f a nonsampled point does fall into the 
predicted category it is simply by chance. 

Summary 
We are not suggesting that VRT wil l 

not or does not work for fertilizer applica­
tion. We believe sincerely that VRT can 
work and has much to contribute to the 
improvement of fertilizer use efficiency. 
VRT must have an accurate map, howev­
er, and that map must be based upon a 

ution, 165 ft. grid, inverse distance 

weighting. 

8 0 a c r e f ie ld 
s i m u l a t e d for 
r a n d o m 
1 6 5 ft. l/d 

• Above 65 (High) 41.0 acres 
• 45-65 (Maintenance) 34.2 acres 
• Below 45 (Buildup) 4.9 acres 

FIGURE 4. Field simulation of soil test P distrib-
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sampling density which includes dis­
tances at which samples are correlated. 
We wish we could provide guidance to the 
required sampling density for all fields, 
but we and others are still researching 
that question. We have seen cases where 
it appears that 2.5 acre samples wil l work, 
but we have also seen many cases where a 
far more dense sampling regime must be 
used. We strongly argue that all fields be 
given more rigorous geostatistical consid­
eration. We also believe that the best way 
to make VRT fertilizer application deci­
sions for many fields is to base those deci­
sions upon previous yield maps and nutri­
ent removal calculations. 
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8 0 a c r e f ie ld 
s imula ted for 
r a n d o m 
1 6 5 ft- l / d 3 

H Above 65 (High) 35.3 acres 
H 45-65 (Maintenance) 27.0 acres 
• Below 45 (Buildup) 17.6 acres 

FIGURE 5. Field simulation of soil test P distrib­

ution, inverse distance cubed 

weighting. 

Rice Yield... 
would require a moderate addition of K 
fertilizer based on a composite sample 
assessment. However, the surface map of 
soil test K, Figure 3, was even more 
revealing. A large part of the field was 
shown to have K values at or below the 
critical level. The grid soil sampling and 
GIS evaluation plainly illustrated a com­
pelling need for adequate K fertilization. 

Summary 
Rice production was almost cer­

tainly limited by P and K fertility as 
indicated by yield monitoring and soil 
test data. The most limited areas of P 
and K availability corresponded with 
the high yielding areas. Evidently, larg­
er amounts of soil P and K were being 
removed where yields were placing the 
greatest demand. Rice in the less-
demanding low-yielding areas was 
probably restricted by poor soil physi­

cal conditions and was not found to 
limited by fertility considerations. 

The combination of site-specific 
yield and soil sampling data provided a 
significant improvement in the quality of 
information available to make produc­
tion assessments. While the expense of 
generating these types of site-specific 
data is significant, the increased insight 
and number of yield-improving options 
offer great promise. 
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