Meeting the Nutrient Demands of Modern Sugarcane Varieties

By D.B. Phonde, P. S. Deshmukh, M.W. Pawar, P.V. Ghodake, B.V. Undare, Harmandeep Singh Khurana, and Aliaksei Shcharbakou

Traditional practice within the average sugarcane field in Maharashtra is producing yields that are far below their potential. This study tests the current fertilization recommendation scheme with a modern crop variety to determine the viability of increasing the supply of nutrients that are commonly known to be either yield limiting or entirely avoided by growers.

n the western State of Maharashtra, the sugarcane agro-Lindustry is second only to cotton in terms of economic importance. The crop has brought many desirable changes in social, economic, educational, and political life throughout its rural areas. High yields are possible and the three planting seasons, and ratoon crops sprouted from a previously harvested crop, can produce 200 to 270 t/ha. However, the state's average cane yield is only 85 t/ ha. An important part of bridging this yield gap is adequate nutrient supply. Numerous research reports indicate that nutrient deficiencies are increasingly prevalent in cane-growing soils of Maharashtra amidst a lack of emphasis on main-

From the IPNI Photo Archive (circa 1990): Sulfur application at 60 kg/ha provides a large growth response (left) in the sugarcane variety of the day. The zero S control is shown on the right.

taining soil fertility (Phonde et al., 2005). The impact of highvielding varieties is an additional concern, as current nutrient recommendations should consider both the potential for both declining soil fertility as well as increasing crop demand.

The study below was designed to evaluate the effects of macro-, secondary-, and micro-nutrients on crop yield, quality and economics on a new high-yielding sugarcane variety. Previous yield trials with this variety show a 20% yield advantage compared to other commonly used varieties.

A split-plot design field study with three replications was carried out from 2009 to 2011 at Manjari and Warna in Maharashtra. Main treatments included a state recommended fertilizer dose (RDF) of 340-170-170 kg N-P₂O₅-K₂O/ha, which was tested against 125%, 150% and 175% of the RDF (Table 1). Sub-treatments included a control with NPK but no secondary or micronutrients, as well as five combinations of S, Fe, Zn, B, and Mn-each applied at its recommended rate.

Results

Cane yields increased significantly with increasing rates of NPK compared to the RDF (Table 1). While the highest cane yield at Manjari was obtained with 150% RDF treatment, the highest yield at Warna was obtained with 175% RDF. In

Abbreviations and notes: N = nitrogen; P = phosphorus; K = potassium; S = sulfur; Fe = iron; Zn = zinc; B = boron; Mn = manganese; CCS = commercial cane sugar; ₹ = Indian Rupee.

Manjari, S3 (S+Fe+Zn) significantly increased cane yield over the control, but yields were not significantly different from the application of S alone. In Warna, S4 (S+Fe+Zn+B) significantly increased cane yields over the control, but its effect was not significantly different from S3.

Commercial cane sugar yields, on the other hand, showed no significant response to NPK application rates above the RDF or to further addition of secondary and micronutrients (Table 1). Juice quality parameters such as brix and pol (Table 2) as well as purity and CCS % (not shown) responded in a similar manner. Ayub et al. (1999) obtained similar results in their research where sugarcane yields increased with the application of higher fertilizer rates, but there was no change in the CCS yields or any of the juice quality parameters.

The economics of NPK fertilization followed a pattern similar to cane yields (Table 3) with significantly higher net returns obtained with 150% and 175% RDF treatments in Manjari and Warna, respectively. Similarly, S, Fe, Zn and B (S4) gave the best economic response to fertilization at Manjari, while S, Fe, Zn, B, and Mn (S5) gave the best economic response at Warna. Thus, a balanced fertilization approach that included the site-specific application of secondary- and micro-nutrients proved superior to just the application of NPK alone.

Summary

Cane yields and net returns increased with NPK application beyond that currently recommended for sugarcane in

Table 1.	Cane and commercial cane sugar (CCS) yields as affected by
	different rates and nutrient combinations at Manjari and Warna,
	Maharashtra, India.

Multidistitut, malu.						
Cane yield, t/ha			CCS yield, t/ha			
Manjari	Warna	Mean	Manjari	Warna	Mean	
NPK (M)						
92.9a	92.0a	92.5	12.8a	14.0a	13.4	
99.4b	93.6b	96.5	11.3a	14.8a	13.1	
107c	98.1c	102	11.3a	15.4a	13.3	
108c	105d	107	13.3a	15.6a	14.4	
Secondary and Micronutrients (S)						
99.0a	94.4a	96.8	13.0a	14.3a	13.6	
102ab	94.8a	98.1	12.2a	14.5a	13.3	
99.5a	96.6a	98.0	11.8a	14.4a	13.1	
103b	97.3abc	100	11.5a	16.1a	13.8	
105b	99.1bc	102	12.1a	15.7a	13.9	
104b	101c	102	12.4a	14.8a	13.6	
Interaction M x S						
NS	NS	-	NS	NS	-	
	92.9a 99.4b 107c 108c <u>Secon</u> 99.0a 102ab 99.5a 103b 105b 105b 104b	Anniari Warna Manjari Warna NPK 92.9a 92.0a 99.4b 93.6b 107c 98.1c 108c 105d Secondary and N 99.0a 94.4a 102ab 94.8a 99.5a 96.6a 103b 97.3abc 105b 99.1bc 104b 101c	Anijari Warna Mean Manjari Warna Mean P2.9a P2.0a 92.5 99.4b 93.6b 96.5 107c 98.1c 102 108c 105d 107 Secondary and Micronutrie 99.0a 94.4a 99.0a 94.4a 96.8 102ab 94.8a 98.1 99.5a 96.6a 98.0 103b 97.3abc 100 105b 99.1bc 102 104b 101c 102	Anipari Warna Mean Manjari Manjari Warna Mean Manjari P2.9a P2.0a P2.5 12.8a 99.4b 93.6b 96.5 11.3a 107c 98.1c 102 11.3a 108c 105d 107 13.3a Secondary and Nicronutrients (S) 99.0a 94.4a 96.8 13.0a 102ab 94.8a 98.1 12.2a 11.8a 103ab 97.3abc 100 11.5a 103b 97.3abc 100 11.5a 105b 99.1bc 102 12.1a 104b 101c 102 12.4a	NPK (M) NPK (M) 92.9a 92.0a 92.5 12.8a 14.0a 99.4b 93.6b 96.5 11.3a 14.8a 107c 98.1c 102 11.3a 15.4a 108c 105d 107 13.3a 15.6a Secondary and Micronutrients (S) 99.0a 94.4a 96.8 13.0a 14.3a 102ab 94.8a 98.1 12.2a 14.5a 99.5a 96.6a 98.0 11.8a 14.4a 103b 97.3abc 100 11.5a 14.5a 103b 97.3abc 100 11.5a 16.1a 104b 101c 102 12.1a 15.7a	

Means in the same column followed by the same letter are not significantly different at p = 0.05.

Recommended fertilizer rates include: 340-170-170 kg N-P_O_-K_O/ha; 60 kg S/ha, 25 kg FeSO,/ha; 20 kg ZnSO,/ha; 5 kg Borax/ha; 10 kg MnŠŎ,/ĥa. Control included 425-210-210 kg N-P₂O₅-K₂O/ha. High-yield variety (Co VSI 9805)

Table 2. Response of sugarcane to levels of NPK, secondary, and micronutrients on Brix and Pol (sucrose) % at Manjari and Warna, Maharashtra, India.

	Brix, %			POL, %			
Treatments	Manjari	Warna	Mean	Manjari	Warna	Mean	
NPK (M)							
M1 (100%RDF)	19.0a	22.6a	20.6	17.3a	20.8a	19.1	
M2 (125%RDF)	19.0a	22.0a	20.5	17.4a	20.6a	19.0	
M3 (150%RDF)	18.6a	21.3a	19.9	18.0a	20.0a	19.0	
M4 (175%RDF)	19.0a	21.4a	20.2	17.7a	20.0a	18.9	
Secondary and Micronutrients (S)							
Control	19.0a	21.5a	20.2	18.2a	20.0a	19.1	
S1 (S)	19.0a	21.3a	20.1	17.6a	19.9a	18.7	
S2 (S+Fe)	19.2a	21.4a	20.3	17.8a	20.0a	18.9	
S3 (S+Fe+Zn)	18.8a	22.9a	20.8	16.8a	21.6a	19.2	
S4 (S+Fe+Zn+B))	18.4a	22.2a	20.3	17.9a	20.8a	19.4	
S5 (S+Fe+Zn+B+Mn)	18.7a	21.2a	19.9	17.3a	19.7a	18.5	
Interaction M x S							
	NS	NS	-	NS	NS	-	
Means in the same column followed by the same letter are not significantly different at $p=0.05.$							

Maharashtra, but the response was site-specific. Cane yield response to secondary and micronutrient application also varied between the two locations. Commercial sugar yield and sugarcane juice quality parameters were not affected by any of the experimental approaches. In summary, a balanced approach that includes the site-specific application of macroas well as secondary- and micro-nutrients is likely to meet the demands

sugarcane fertilization at Manjari and Warna, Maharashtra, India.							
	Gross	Cost of	Net				
	returns,	Cultivation,	returns,				
Treatments	'000 ₹ /ha	'000 ₹ /ha	'000 ₹ /ha				
Manjari							
NPK (M)							
M1 (100%RDF)	167a	81	86a				
M2 (125%RDF)	180b	83	97b				
M3 (150%RDF)	192c	86	106c				
M4 (175%RDF)	195c	88	107c				
Secondary and Micronutrients (S)							
Control	178a	83	95a				
S1 (S)	183b	84	99b				
S2 (S+Fe)	179a	84	95a				
S3 (S+Fe+Zn)	186bc	85	101bc				
S4 (S+Fe+Zn+B))	189c	85	104c				
S5 (S+Fe+Zn+B+Mn)	187c	86	101bc				
Warna							
	NPK (N	1)					
M1 (100%RDF)	166a	81	85a				
M2 (125%RDF)	168a	83	85a				
M3 (150%RDF)	177b	86	91b				
M4 (175%RDF)	189c	88	101c				
Secondary and Micronutrients (S)							
Control	170a	83	87a				
S1 (S)	171a	84	87a				
S2 (S+Fe)	174ab	84	90ab				
S3 (S+Fe+Zn)	175abc	85	90ab				
S4 (S+Fe+Zn+B))	178bc	85	93bc				
S5 (S+Fe+Zn+B+Mn)	182c	86	96c				
Means in the same column followed by the same letter are							

Table 3. Economic evaluation of different levels of

Means in the same column followed by the same letter are not significantly different at p = 0.05.

*Economic returns and cost of cultivation were calculated using the following: Minimum support price of sugarcane = ₹2.5/kg; Costs of fertilizer N, P, K, S, Fe, Zn, B, and Mn = ₹10.5, 16.5, 7.5, 26.5, 22, 20, 34, and 28/kg, respectively; Labor cost = ₹105/day in addition to irrigation and pesticide costs. US\$1=₹60.

of modern sugarcane varieties and generate better results for growers.

Mr. Phonde (e-mail: dbphonde@rediffmail.com), Dr. Deshmukh, Dr. Pawar, Dr. Ghodake and Dr. Undare are with the Vasantdada Sugar Institute, Pune, Maharashtra, India. Dr. Khurana is Agronomic & Technical Support Specialist, IPNI, Saskatoon, Canada. Dr. Shcharbakou is Director, Agronomy at Uralkali Trading, Singapore.

References

- Phonde, D.B., Y.S. Nerkar, N.A. Zende, R.V. Chavan, and K.N. Tiwari. 2005. Better Crops with Plant Food 89(3):21-23.
- Ayub, M., R. Ahmad, A. Tanveer, H.Z. Ahmad, and M.S. Sharar. 1999. Pakistan J. Biol. Sci. 2(1):80-82.