Ginger (Zingiber officinale) is an important industrial crop of China. Its rhizomes contain balmy essential oil and pungent Gingerone, making it popular as a flavoring agent, in Chinese medicines, and as a special vegetable in people’s daily diets worldwide. China is currently one of the largest ginger producing countries in the world. Recent statistics indicate that the ginger production area in China has reached 240,000 ha, which accounts for 48% of the world’s ginger-growing area (Ministry of Agriculture, 2006). Anhui is one of the leading ginger-producing provinces in China, where ginger planting has become a primary income source for local farmers.

Ginger requires large quantity of nutrients, especially K, for successful cultivation. However, in both Anhui and other areas in China, farmers usually over apply N and P fertilizers, while K fertilization is ignored. This imbalance in N, P and K applications results in low rhizome yield and inferior quality of ginger. Field experiments were conducted on a loam soil from 2007 to 2009 in Shanqiao and Yangqiao towns, Linquan county of Anhui to evaluate the effects of K application on ginger rhizome production. Some physical and chemical properties of the top 20 cm of all experimental soils are listed in Table 1. Available K was deficient in all the soils.

Potassium fertilizer at five different rates (0, 225, 450, 675, and 900 kg K₂O/ha) applied as KCl was broadcast in different plots before ginger transplanting each year of the experiment. All plots received 450 kg N (urea) and 90 kg P₂O₅ (DAP) per ha in each year as well. For all the experiments, basal fertilization included all of the P and K fertilizers plus 60% of the total N fertilizer, while the remaining 40% N was equally applied in two topdressings at about 105 and 135 days after ginger transplanting. The cultivar was local ‘Lion-head’ ginger planted at 106,000 plants/ha.

Ginger plants without K fertilization gradually showed K deficiency symptoms—from pale green to yellow coloration along the tip and edge of the older leaves in the lower part of the plant, while the veins of leaves remained green. Eventually the whole leaf withered, died, and fell with the development of K deficiency, and the whole plant became stunted with small leaves (Figure 1). Ginger plant grew normally in the treatment supplied with 450 kg K₂O/ha, and did not show any K deficiency symptoms.

Ginger rhizome yield responded significantly to K applications (Table 2). In 2007, K application with 225 to 900 kg K₂O/ha increased ginger rhizome yields by 13 to 41% (average 26%) as compared to no K treatment. The medium K application rate (450 kg K₂O/ha) produced the highest rhizome yield, while the highest K application rate (900 kg K₂O/ha) actually resulted in significantly lower rhizome yields than those obtained with K application rates of 225 or 675 kg K₂O/ha. The probable reasons for this yield decrease can be either excessive K application leading to imbalanced ginger plant nutrition compared to N and P, or Cl- toxicity as ginger is a Cl- sensitive crop. The K response trends were similar across all the three years as the yield of ginger rhizome increased by 18 to 45% (average 39%) in year 2, and by 14 to 37% (average 34%) in year 3 when compared with no K treatment.

Various indicators of ginger rhizome quality as affected by K fertilization are shown in Table 3. Among all quality parameters, vitamin C, soluble sugar, crude protein, nitrate, and nitrite contents of ginger rhizome are the most important to consider. The first three parameters are known to influence edible quality, while the last two parameters govern food security because high concentrations of nitrate and nitrite in ginger rhizome are harmful to human health.

The vitamin C content in ginger rhizomes responded significantly to K₂O/ha increased ginger rhizome yields by 13 to 41% (average 26%) as compared to no K treatment. The medium K application rate (450 kg K₂O/ha) produced the highest rhizome yield, while the highest K application rate (900 kg K₂O/ha) actually resulted in significantly lower rhizome yields than those obtained with K application rates of 225 or 675 kg K₂O/ha. The probable reasons for this yield decrease can be either excessive K application leading to imbalanced ginger plant nutrition compared to N and P, or Cl- toxicity as ginger is a Cl- sensitive crop. The K response trends were similar across all the three years as the yield of ginger rhizome increased by 18 to 45% (average 39%) in year 2, and by 14 to 37% (average 34%) in year 3 when compared with no K treatment.

Various indicators of ginger rhizome quality as affected by K fertilization are shown in Table 3. Among all quality parameters, vitamin C, soluble sugar, crude protein, nitrate, and nitrite contents of ginger rhizome are the most important to consider. The first three parameters are known to influence edible quality, while the last two parameters govern food security because high concentrations of nitrate and nitrite in ginger rhizome are harmful to human health.

The vitamin C content in ginger rhizomes responded significantly to K₂O/ha increased ginger rhizome yields by 13 to 41% (average 26%) as compared to no K treatment. The medium K application rate (450 kg K₂O/ha) produced the highest rhizome yield, while the highest K application rate (900 kg K₂O/ha) actually resulted in significantly lower rhizome yields than those obtained with K application rates of 225 or 675 kg K₂O/ha. The probable reasons for this yield decrease can be either excessive K application leading to imbalanced ginger plant nutrition compared to N and P, or Cl- toxicity as ginger is a Cl- sensitive crop. The K response trends were similar across all the three years as the yield of ginger rhizome increased by 18 to 45% (average 39%) in year 2, and by 14 to 37% (average 34%) in year 3 when compared with no K treatment.

Various indicators of ginger rhizome quality as affected by K fertilization are shown in Table 3. Among all quality parameters, vitamin C, soluble sugar, crude protein, nitrate, and nitrite contents of ginger rhizome are the most important to consider. The first three parameters are known to influence edible quality, while the last two parameters govern food security because high concentrations of nitrate and nitrite in ginger rhizome are harmful to human health.

The vitamin C content in ginger rhizomes responded significantly to K₂O/ha increased ginger rhizome yields by 13 to 41% (average 26%) as compared to no K treatment. The medium K application rate (450 kg K₂O/ha) produced the highest rhizome yield, while the highest K application rate (900 kg K₂O/ha) actually resulted in significantly lower rhizome yields than those obtained with K application rates of 225 or 675 kg K₂O/ha. The probable reasons for this yield decrease can be either excessive K application leading to imbalanced ginger plant nutrition compared to N and P, or Cl- toxicity as ginger is a Cl- sensitive crop. The K response trends were similar across all the three years as the yield of ginger rhizome increased by 18 to 45% (average 39%) in year 2, and by 14 to 37% (average 34%) in year 3 when compared with no K treatment.

Various indicators of ginger rhizome quality as affected by K fertilization are shown in Table 3. Among all quality parameters, vitamin C, soluble sugar, crude protein, nitrate, and nitrite contents of ginger rhizome are the most important to consider. The first three parameters are known to influence edible quality, while the last two parameters govern food security because high concentrations of nitrate and nitrite in ginger rhizome are harmful to human health.

The vitamin C content in ginger rhizomes responded significantly to K₂O/ha increased ginger rhizome yields by 13 to 41% (average 26%) as compared to no K treatment. The medium K application rate (450 kg K₂O/ha) produced the highest rhizome yield, while the highest K application rate (900 kg K₂O/ha) actually resulted in significantly lower rhizome yields than those obtained with K application rates of 225 or 675 kg K₂O/ha. The probable reasons for this yield decrease can be either excessive K application leading to imbalanced ginger plant nutrition compared to N and P, or Cl- toxicity as ginger is a Cl- sensitive crop. The K response trends were similar across all the three years as the yield of ginger rhizome increased by 18 to 45% (average 39%) in year 2, and by 14 to 37% (average 34%) in year 3 when compared with no K treatment.
applications (Table 3). With K application rates of 225 to 675 kg K₂O/ha, there was a significant increase (13 to 31%, average 20%) in vitamin C content of ginger rhizome as compared to the no K treatment. The highest content of vitamin C was obtained with the application of 450 kg K₂O/ha, while as with the yield response, the application of 900 kg K₂O/ha lowered the content of vitamin C in rhizomes by 4% when compared with the no K treatment.

The soluble sugar content of ginger rhizomes responded to K applications quite differently than vitamin C content (Table 3). In general, the soluble sugar content increased by 1 to 17% (average 8%) across K treatments ranging from 225 to 900 kg K₂O/ha over no K treatment. However, most of these increases were not statistically significant. The highest soluble sugar content was found with the application of 450 kg K₂O/ha, but the value wasn’t statistically different from the soluble sugar contents found with applications of 225 and 675 kg K₂O/ha.

Nitrate and nitrite contents of ginger rhizomes responded significantly to different K application rates (Table 3). Applications of 225 to 900 kg K₂O/ha significantly reduced the contents of nitrate by an average of 31% (range of 26 to 36%) and nitrite by an average of 16% (range of 5 to 25%) in ginger rhizomes. Both nitrate and nitrite contents first dropped and then increased as K application rates increased, with the lowest values obtained with the application of 450 kg K₂O/ha.

Results from a series of demonstration trials conducted for three years in ginger-growing areas of China showed significant rhizome yield increases and economic benefits when fertilizer K application was balanced with other nutrients. Rhizome yield increased from 44 to 56 t/ha (26%) and farmer profits increased by US$3,213 (range of US$2,248 to 4,002 across the three years) by increasing farmer’s K application rates by an average of 26%.

Summary

Potassium application at 450 kg K₂O/ha significantly increased yield and improved quality parameters of ginger rhizomes grown on K deficient soils in Anhui. More attention needs to be paid to potential K requirements of the ginger crop in Anhui and other ginger-growing provinces, where K deficiency may become more serious in future due to extensive K mining of soils and the adoption of high-yielding ginger cultivars and/or more intensive cropping systems.

References

Table 3. Effect of potassium application rates on quality of ginger rhizome (average of 3 years), Anhui, China.

<table>
<thead>
<tr>
<th>kg K₂O/ha</th>
<th>Vitamin C, mg/kg</th>
<th>Soluble sugar, %</th>
<th>Crude protein, %</th>
<th>Nitrate, mg/kg</th>
<th>Nitrite, mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>33.8 c</td>
<td>3.35 b</td>
<td>11.9 b</td>
<td>160.7 a</td>
<td>3.85 a</td>
</tr>
<tr>
<td>225</td>
<td>38.2 b</td>
<td>3.62 ab</td>
<td>13.3 a</td>
<td>115.5 b</td>
<td>3.44 b</td>
</tr>
<tr>
<td>450</td>
<td>44.2 a</td>
<td>3.93 a</td>
<td>13.6 a</td>
<td>102.3 c</td>
<td>2.87 c</td>
</tr>
<tr>
<td>675</td>
<td>39.2 b</td>
<td>3.63 ab</td>
<td>13.3 a</td>
<td>107.4 bc</td>
<td>2.96 c</td>
</tr>
<tr>
<td>900</td>
<td>32.3 c</td>
<td>3.39 b</td>
<td>11.7 b</td>
<td>118.8 b</td>
<td>3.65 ab</td>
</tr>
</tbody>
</table>

Values in each column followed by different letters are statistically different at p = 0.05.

Drs. Li, Wang and Wu work in the Soil and Fertilizer Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China; E-mail: luliujiu@yahoo.com.cn. Dr. Chen is Director, IPNI Southeast Program, Wuhan, Hubei, China. Dr. Yao works in the Extension Centre of Agricultural Technology, Linquan, Anhui, China.

Figure 1. Ginger crop response to fertilizer 450 kg K₂O per ha. Plants grown without K shown in the foreground in top photo and in the bottom left photo. Plants grown with K shown in the background in top photo and in the bottom right photo.