Better Crops/Vol. 97 (2013, No. 4)

Abbreviations and Notes: N = nitrogen; IPNI Project # USA-NY10.

Optimal management of N for corn varies from year to year owing to differences in weather. The Adapt-N tool combines soil and crop models to predict the influence of weather on plant N demand, soil N supply, and soil N losses. On-farm validation of the tool in New York and Iowa has confirmed that its use leads to better choices for rate and time of application, improving profitability of fertilizer N use and reducing its environmental impact.

Figure 1. Users access the Adapt-N tool via web-enabled devices, automatically engaging the Precision Nitrogen Management (PNM) simulation model to obtain location-specific, weather-adjusted sidedress recommendations.
Case Study: New York Farm Uses Adapt-N to Save Money and Reduce Environmental Impact

Donald and Sons Farm in Moravia, NY grows about 1,300 acres of corn and soybean annually. Until 2011, the farm used N application rates recommended by a commercial soil testing laboratory, which ranged between 195 to 260 lb N/A. The majority of their fertilizer N is applied as anhydrous ammonia at sidedress time, because early season applications run the risk of losses during wet springs. Only 22 lb/A of N is applied at planting as urea ammonium nitrate (UAN). Their large expenditures on N fertilizer were a strong incentive to seek new tools to optimize application rates and to collaborate with the Adapt-N beta-testing efforts. The web-based Adapt-N tool combines soil and crop models to predict the influence of weather on plant N demand, soil N supply and soil N losses.

After the dry 2011 spring, the Adapt-N recommendation for their trial field was only 80 lb/A. Their old recommendation was 220 lb/A, and they found no yield penalty with the substantially reduced N rate. For 2012, the farm decided to fully adopt Adapt-N and host numerous trials. They sidedressed 922 acres of corn using the tool’s recommendations, employing their real-time kinetic (RTK)-GPS system to target variable rates on 90 management units distributed across 18 fields. Recommendations from Adapt-N varied from 65 to 190 lb/A, depending on local temperature, precipitation, soil texture and organic matter content (varying from 1% to 6%), as well as the date of sidedressing. In collaboration with the Cornell Adapt-N Team, on 15 fields, they left replicated comparison strips of the conventional “old” rate. Decreasing N applications by 87 lb/A reduced the simulated total N losses to the environment by 70 lb/A (by 15 December 2012), and reduced N leaching losses by 10 lb/A. Adapt-N resulted in profit gains in 83% of trials, and average savings were 42 $/A. For the farm, they saved 67,000 lb of unneeded N in 2012, with total savings of over $30,000.

By applying a science-based model of the soil and crop processes involved in the N cycle, their management of source, rate, timing and placement of N led to higher profit and reduced impact on the environment. The approach is consistent with the principles of 4R Nutrient Stewardship.

For more information, see http://adapt-n.cals.cornell.edu/
alternative management scenario analyses. A feature allows for automatic daily updates of simulation results via email or text message. Graham et al. (2010) applied the model to generate within-field site-specific N recommendations.

On-farm Testing
The main question for users is whether the tool provides recommendations that increase profits and reduce environmental impacts. We are answering this through replicated on-farm strip trials, totaling 84 in 2011 and 2012 (Figure 3). They involved grain and silage corn in fields with varying management history (organic amendments, crop rotation, tillage practices, etc.). Sidedress treatments involved at least two rates of N, a conventional producer-chosen “Grower-N” rate and an “Adapt-N” rate. A simulation was run for each field just prior to sidedressing to determine the Adapt-N rate.

Yields were measured by weigh wagon, yield monitor, or in a few cases by representative sampling (two 20 ft. x 2 row sections per strip). For farms harvesting silage, yields were converted to grain equivalents assuming 8.14 bu grain per ton of silage. Partial profit differences between the Adapt-N and Grower-N rates were calculated. For grain, prices of 5.50 and 6.00 $/bu were assumed for 2011 and 2012, respectively. For silage, 50 $/ton was assumed in both 2011 and 2012. A fertilizer N price of 0.60 $/lb was used for all trials.

Economic Results
Profit gains for the use of Adapt-N over the producer chosen rates were considerable, in 80% of New York trials, in 75% of Iowa trials, and 79% overall (Table 1). Of the 21% of cases where Adapt-N underperformed and caused lower profits, the majority was associated with either underestimated yield expectations from user inputs, or mid-season droughts following higher Adapt-N recommendations. The former concern can be corrected through better user training on yield goal estimation, and the latter relates to as yet unavoidable uncertainty about future weather events at sidedressing time.

Adapt-N recommended lower N rates for 88% of trials, in part related to generally dry growing season conditions in both years. Marginal profits were on the average 27 $/A higher (p < 0.0001) and N inputs 54 lb/A lower (p < 0.0001) when Adapt-N was used. Profit gains were also achieved in some instances where Adapt-N recommended higher N rates, and consequent yield increases were achieved. Yields decreased by only 1 bu/A on average for all 84 trials (statistically insignificant), indicating that the reduced N recommendations were generally justified. The yield decrease would have been smaller had the expected yields been estimated correctly.

Table 1. Comparison of Adapt-N and Grower-N rates from replicated on-farm strip trials.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of fields</td>
<td>9</td>
<td>19</td>
<td>14</td>
<td>42</td>
<td>84</td>
</tr>
<tr>
<td>N fertilizer input, lb/A</td>
<td>-25</td>
<td>-36</td>
<td>-66</td>
<td>-65</td>
<td>-54</td>
</tr>
<tr>
<td>Yield, bu/A †</td>
<td>+2</td>
<td>-1</td>
<td>-3</td>
<td>-1</td>
<td>-1</td>
</tr>
<tr>
<td>Profit, $/A †</td>
<td>+25</td>
<td>+17</td>
<td>+26</td>
<td>+32</td>
<td>+27</td>
</tr>
<tr>
<td>Trials with greater profit, %</td>
<td>78%</td>
<td>74%</td>
<td>86%</td>
<td>79%</td>
<td>79%</td>
</tr>
</tbody>
</table>

† Yields ranged from 75 to 245 with a mean of 175 bu/A.

Figure 3. On-farm trial locations. Map courtesy of Google maps and batchgeo.com

Environmental Impacts
Lower Adapt-N recommendations resulted in substantial reductions in N losses to the environment. By the end of the growing season, simulated total N losses decreased by an average of 39 lb/A, and simulated N leaching losses declined by 8 lb/A with the use of Adapt-N. In 2012, simulated total N losses and particularly leaching losses of sidedress-applied excess N remained relatively low due to widespread dry conditions until the winter of 2012-2013. The above simulations did not include further environmental benefits achieved during the following, generally wet, spring of 2013.

Conclusions
Two consecutive growing seasons of on-farm strip trial testing demonstrated that Adapt-N resulted in profit gains in four out of five cases. The strip trial results show that using Adapt-N provides a win-win: economic advantages to growers, as well as environmental benefits. In all, Adapt-N promotes more accurate N management, and the tool’s increasing precision as the growing season progresses also provides a strong incentive to shift the timing of N applications to late spring and early summer.

Acknowledgments
Funding from the NY Farm Viability Institute, the USDA-NRCS Conservation Innovation Program, IPNI, and MGT Environet is gratefully acknowledged, along with the cooperation of many collaborators, farmers, consultants, and extension staff.

Dr. Moebius-Clune, Professor van Es, and Dr. Melkonian are with Cornell University, Ithaca, New York; email: bnm5@cornell.edu.

References