Learning from Long-term Experiments – What Do They Teach Us?

By Rob Norton, Roger Perris, and Roger Armstrong

Established in 1916, the Longerenong long-term rotation provides a platform for evaluating long-term trends in farming systems and soil health over a period of many years. Longerenong rotation 1 (LR1) gives us essentially the same message as other long-term agronomic experiments. The message is that rotations can be sustained and productive provided the challenges of diseases, weeds, soil structure, and nutrient replacement are met.

Long-term agronomic experiments (LTAE) reflect new ideas and practices in farming systems. The longest running experiments were established at Rothamsted in the United Kingdom (UK) in 1843, and seven are still running today (Rassmussen et al., 1998). There are only 10 others of these classical (more than 50 years) experiments across the globe, including LR1 in Australia.

LR1 is Australia’s longest running annual cropping system experiment, established in 1916 on a self-mulching, alkaline Grey Vertosol near Horsham in southeastern Australia. Average annual rainfall is about 420 mm. LR1 sought to identify what crop sequences would provide improved yields and over time it has become a platform for other research such as on the use of superphosphate. The experiment compares seven cropping rotations and although not spatially replicated, each cropping phase is present every year. The rotations are continuous

- continuous wheat (WWW)
- wheat/fallow (WF)
- wheat/oats grazed/fallow (WOgF)
- wheat/barley/peas (WBP)
- wheat/oats/peas (WOP)
- wheat/oats grazed/fallow (WOgF)
- wheat/oats/oats grazed/fallow (WOOgF)

The crops receive no fertilizer N, 10 kg P/ha on cereals, and 5 kg P/ha on other harvested crops. Crop establishment, weed control, and crop protection activities follow district practice. In the soil, N and P are present in a range of forms that have different availabilities to plants. Most of the soil N is present in organic forms which are mineralised to nitrate which is the form that plants can take up. Applied P is partitioned into a range of soil pools with different plant availability, due to differences in desorption, dissolution, and mineralisation rates that contribute to plant P nutrition. Soil tests can distinguish the more available P (e.g. resin, bicarbonate, and sodium hydroxide extractable) forms in the soil (Hedley et al., 1982). Understanding the fate of this applied P helps us predict future P strategies.

The 90+ years of this experiment have given several lessons about grain yields, nutrient removals, and sustainability.

Lesson 1– Yields can be sustained over long periods

The mean wheat yields over the period of the experiment are shown in Figure 1. There are phases in these trends and the most recent recovery, starting in 1975, is coincident with the use of herbicides on this experiment (Hannah and O'Leary 1995). Over the past 10 years, the rotation experiment has been challenged by the root nematode Pratylenchus and infestations of the weed bromegrass, but the downward trend seen in Figure 1 since about 2000 is a result of low rainfall over that time. The only rotation that did not trend downwards is the WWW, which was already low yielding.

The highest producing rotation (WBP) from LR1 produced two and a half times the energy equivalence of the WWW rotation (2.22 t/ha/y glucose equivalence versus 0.87 t/ha/y glucose equivalence). Glucose equivalence is the energy content of the grain and provides a way to compare yields of different crops with different energy densities. Over the past 90 years, the WBP has produced 1.52 t/ha of wheat, 1.53 t/ha peas, and 1.57 t/ha barley in its 3-year cycle. At current grain

LR1 has a history of providing lessons to farmers and scientists. This photograph was taken at the annual field day in 1930.

Figure 1. Grain yields of four of the seven rotations from LR1. Data presented are the 10-year moving means for the wheat phases of the rotations for the period 1916 to 2008.

Abbreviations and notes: N = nitrogen; P = phosphorus; C = carbon; N_2 = atmospheric N.
Lesson 2 – Nutrient balances need to be addressed

Long-term production does come at a cost, though. Table 1 shows the N and P balance for LR1 over the past 25 years. This period was chosen because the experiment was altered a little in 1984 and since then south-eastern Australia has experienced a long period of below average rainfall.

Grain yield has been recorded each year and grain protein (N) in recent years. However, seed P content has not been measured, but estimated from other experiments. To develop a nutrient balance for this experiment, the apparent balance of N or P was calculated on an annual basis as:

\[
\text{N balance} = \Delta \text{N} = \text{N applied as fertilizer} - \Delta \text{N removed in grain} \\
\text{P balance} = \Delta \text{P} = \text{P applied as fertilizer} - \Delta \text{P removed in grain}
\]

No estimates were made for free living N fixation, non-biological N inputs, N leaching, N volatilization, or N lost in soil erosion. The \(N_2\) fixation for the pea phases were estimated using the peak biomass for peas from the pea grain yield, assuming a harvest index of 0.3, then converting this peak biomass to N fixed by using the conversion of 25 kg N/tonne of biomass (Peoples et al. 2001).

Grain N removal was estimated by the grain N content multiplied by the yield of peas, barley, or wheat. Both the grazed oats and the crop stubbles were retained within the plots. Grain P content was estimated from grain P contents taken in 2005, but the actual grain P contents may differ in response to different soil P levels.

Table 1 shows an average N removal of 12 kg N/ha/y from 1984 where no pulse was included and a slightly positive N balance where the rotation included peas.

There was no baseline soil archived when the experiment was established 90 years ago, and so a “fence-line” sample was taken in an uncultivated area adjacent to the site. The soil N and C values (top 10 cm) measured then are in general agreement with the estimated N decline from the mass balances. While it is not possible to fully analyze these data due to the nature of the experimental design, there is an indication that C:N ratios are higher for rotations that have fallows, reflecting the gradual decline in the amount and nature of the organic matter present.

Table 1 also shows the P balance for the various rotations at LR1. Tang et al. (2006) reported P fractionation of the soils from this experiment and a summary of some of these results is given in Table 2. All rotations show a positive P balance except for the two grazed oat rotations. The total amount of P and the less available acid-soluble P fraction increased in all rotations, especially in the continuous wheat which also had the highest P balance. The regular P applications used as part of the cropping practices in this experiment increased prices, this is the most profitable rotation. Although damaging to soil structure, the inclusion of a fallow phase into the rotations gave lower yield variability than continually cropped rotations, especially in these years of low rainfall over the past decade (Table 1).

Weed and disease control strategies both require biological diversity in the farming system. Crop rotation is fundamental to ensure sustainable production systems with each phase acting as a tool to support and enhance the following crops by providing disease breaks, opportunities for alternative weed control strategies, and/or improving soil conditions.

Table 1. Apparent mass balances for N and P for the seven rotations of LR1 (1986-2008).

<table>
<thead>
<tr>
<th>Rotation treatment 1986-2006</th>
<th>Average wheat yield, t/ha</th>
<th>Δ kg P/ha/y</th>
<th>Δ kg N/ha/y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous wheat</td>
<td>0.64±0.52</td>
<td>7.3</td>
<td>-7.3</td>
</tr>
<tr>
<td>Wheat:fallow</td>
<td>1.5±0.76</td>
<td>0.9</td>
<td>-11.8</td>
</tr>
<tr>
<td>Wheat:grazed oats:fallow</td>
<td>2.0±0.97</td>
<td>-0.3</td>
<td>-10.6</td>
</tr>
<tr>
<td>Wheat:barley:peas</td>
<td>1.46±1.31</td>
<td>3.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Wheat:oats:peas</td>
<td>1.39±1.24</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>Wheat:oats:fallow</td>
<td>1.86±0.95</td>
<td>3.0</td>
<td>-13.9</td>
</tr>
<tr>
<td>Wheat:oats:grazed oats:fallow</td>
<td>2.11±0.96</td>
<td>-0.1</td>
<td>-12.1</td>
</tr>
</tbody>
</table>

Table 2. Soil N, C, bicarbonate extractable P (Olsen P), total P, and selected P fractions as a percentage of total P for rotations of LR1 and the adjacent uncropped fenceline, when sampled in 2005.

<table>
<thead>
<tr>
<th>Source: Longerenong College open day in 1930, putting new cultivars in front of farmers.</th>
<th>Source: Longerenong College open day in 1930, putting new cultivars in front of farmers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation</td>
<td>WWF</td>
</tr>
<tr>
<td>Total soil N %</td>
<td>0.070</td>
</tr>
<tr>
<td>C: N ratio</td>
<td>13.3</td>
</tr>
<tr>
<td>Total P, mg/kg</td>
<td>486</td>
</tr>
<tr>
<td>Bicarbonate Ext. P. mg/kg</td>
<td>69</td>
</tr>
<tr>
<td>% HCl P</td>
<td>39</td>
</tr>
<tr>
<td>% Residual P</td>
<td>35</td>
</tr>
</tbody>
</table>

Longerenong College was one of the first places in southeastern Australia to trial superphosphate for grain production.
the total P content of the soil, while the relative proportion of P in the “plant available” pools decreased.

Where is the N coming from? Unfortunately, LR1 had no soil samples archived from the beginning, but we can look at fenceline soils as a measure of “native” soil levels. Table 2 shows the soil N and C levels. It is possible to estimate the annual decline in soil N from these data, if we assume the starting point was the fenceline soil. These values are largely consistent with the mass balance estimates and indicate that the decline in N is basically derived from the mineralization of organic matter. The conclusion then is that to access N in rotations, soil organic matter needs to be oxidized, and N from the soil comes at a cost to soil C. We need to consider the converse of this statement, which is that if we wish to sequester C in soils, N (and P) will need to be supplied.

Where is the P going? It is clear that the long-term P applications have raised the total amount of soil P, basically in accord with input and outputs presented in Table 1. The soil P fractions differ in their availability to crops and these results show that almost all the applied P is now in the low availability pool (Residual and Acid P). Tang et al. (2006) took soil from these rotations and tested the crop response to P in a glasshouse. This showed a positive response to additional P which is not what would be expected from the Olsen soil P test values. The conclusion is that on these alkaline soils, the fixation processes are rapid and current commercial soil tests are not very reliable indicators of potential P response, and indeed the responses differed among a range of crops used to test response. Those authors also concluded that the key to improving P use efficiency is to match P fertilizer applications to crop P removal on these soils.

Soil C levels The effect of mineralizing N is to reduce C so that soil C levels have declined. With the current interest in C sequestration, LTAEs such as LR1 can provide unique real world data on soil C stocks under different farming systems. In 1916, when the experiment was established, such a question would not have been thought of and now as part of a new research project, this site will be used to measure soil C stocks to depth and accounting for soil bulk density.

Conclusion

At the most fundamental level, LTAEs provide us with reassurance that cropping and pasture systems can operate for many decades and depending on the strategies adopted, continue to produce food and fibre with resource protection. While cropping and pasture systems computer simulation models can help refine information, they do require real world data to calibrate against. Conclusions based on 10 to 20 years of experimental data can be quite different to those based on 50 years of data. Long-term agronomic experiments have provided us with understanding about the trends in productivity associated with different crop sequences and tillage operations. Since their inception, we now use LTAE’s to help identify factors affecting sustainability and environmental quality as well as species impacts in response to change.

While we know a lot about the effect of systems on soil health (“knowns”), there are things we have not yet parametrised (“known unknowns”, such as soil C). There are other things we have not even considered. Dealing with “unknown unknowns” is difficult to cost and plan for, but having well planned and suitably resourced long-term experiments can play a vital role in such studies. As Rassmussen et al. (1998) indicated, “We need continuity with the past to better predict the future.”

Mr. Perris is a technical officer with the Victorian Department of Primary Industries in Horsham, Australia. He manages the Longerenong long-term rotation. Dr. Armstrong is the Senior Agronomist with the Victorian Department of Primary Industries at Horsham. Dr. Norton is Regional Director, IPNI Australia & New Zealand, located at Horsham; e-mail: rnorton@ipni.net.

Acknowledgments

The nutrient balances constructed here were supported by the Grains Research and Development Corporation through the project UM00023. The authors acknowledge the foresight of those who established these long-term experiments, as well as the generations of staff involved in managing them since their inception.

References