Effect of Magnesium Fertilizer on Sustaining Upland Agricultural Development in Guangxi Province

By Tan Hongwei, Du Chenglin, and Zhou Liuqiang

The rainfed upland soils of Guangxi province in south China are subject to high rainfall and heat, as well as an intense climate that has effectively made most agricultural soils nutrient poor. When fertilized, these soils can support a wide variety of high value crops. It is apparent, however, that the future profitability of the region depends on balanced fertilization. This article describes how insufficient soil magnesium (Mg) is limiting crop yield, quality, and use efficiency of nitrogen (N), phosphorus (P) and potassium (K).

Plant available Mg in the main upland soils of Guangxi province is quite variable (10.9 to 370.6 mg exchangeable Mg/kg), but soils commonly used for crop production...such as lateritic red earth, latosols and silicosols...often test less than 70 mg exchangeable Mg/kg.

This study found a negative correlation between soil exchangeable Mg levels and applied Mg. That is, at high levels of soil Mg, application of Mg fertilizer reduced yields. This is expressed in the following

Table 1. Influence of Mg fertilizer application on cash crop yields, kg/ha.								
		Treatment						
Crops		NP	NPMg	NPK1	NPK1Mg	NPK2	NPK2Mg	
Cassava	Yield Yield incr. %	8,400	9,516 1,116 13.3	19,270	21,207 1,937 10.1	23,697	27,788 4,091 17.3	
Kenaf	Yield Yield incr. %	 _		1,940	2,366 426 22.0	2,619	3,012 393 15.0	
Sugarcane	Yield Yield incr. %	60,937	64,875 3,937 6.5	82,610	99,426 16,815 20.3	85,483	93,176 7,693 9.0	
Watermelor	r Yield Yield incr. %	24,724	34,695 9,971 40.3	41,991	44,584 2,593 6.2	44,284	46,371 2,087 4.7	
Pineapple	Yield Yield incr. %	35,563	37,969 2,406 6.8	44,906	49,063 4,156 9.3	45,163	52,219 7,056 15.6	

Improved pineapple growth due to balanced fertilization is shown at Guangxi. to note that most crops had large yield responses to K fertilizer as well, but addition of Mg to the NPK treatments resulted in further yield gains.

exchangeable Mg.

Application of Mg fertilizer not only increased yield, but also had a positive effect on quality. Sugar content in sugarcane increased 0.9 percent, fiber intensity of kenaf increased, and soluble sugar content in watermelon increased 0.90 to 1.79 percent.

All the crops absorbed more N and P when Mg was applied, while K uptake was increased only in some cases. Generally, Mg application reduced both K and calcium (Ca) uptake. It is important these facts be

Table 2.	Influence of	Mg fertilize	er application	on oil crop	yields, kg/ha.	
		····· Treatment ·····				
Crops		NPK1	NPK1Mg	NPK2	NPK2Mg	
Peanut	Yield	3,083	3,934	4,526	4,592	
	Yield incr.		851		66.0	
	%		27.6		1.5	
Soybean	Yield	1,380	1,920	2,134	2,299	
	Yield incr.		540		165	
	%		39.1		7.7	

 Table 3.
 Influence of Mg fertilizer application on grain and tuber crop yields, kg/ha.

		····· Treatment ·····					
Crops		NPK1	NPK1Mg	NPK2	NPK2Mg		
Corn	Yield Yield incr. %	3,833	4,036 203 5.3	4,716	5,117 401 8.5		
Sweet potato	Yield Yield incr. %	11,261	11,914 652 5.8	12,688	14,139 1,451 11.4		
Rice	Yield Yield incr. %	4,890	5,115 225 4.6	_	_		

considered in a fertilizer recommendation that includes Mg so that proper balances are kept for healthy plant growth and to maintain soil fertility.

equation: Y=10.95e^{-0.30x+lnx}, where Y=yield, e=constant (2.7183), and x=content of

The average yield response to Mg fertilizer in cash crops, oil crops, grain crops, and vegetables was 4.7 to 40.3; 1.5 to 39.1; 4.6 to 11.4; and 1.7 to 25.5 percent, respectively, (Tables 1 to 4). It is important

Balancing Magnesium in the Uplands of Guangxi Province

Only a small amount of Mg (2.04 kg/ha per year) is supplied to the region's rainfed upland crops through precipitation. Additionally, the stability of Mg-containing soil minerals is poor. Since the area endures high temperatures and heavy rainfall, sources of soil Mg are subject to rapid weathering and leaching resulting in large Mg losses. This negative balance was further amplified with the introduction of improved crop varieties that were both higher yielding and Mg-loving. For instance, cassava may take up more than 19 and sugarcane 130 or

more kg MgO/ha/yr (Table 5). Higher NPK fertilizer use producing higher yields has also resulted in greater crop removal of Mg from these soils.

Better Crops International Vol. 14, No. 2, November 2000

Table 4.	le 4. Influence of Mg fertilizer application on vegetable crop yields, kg/ha.						
	······ Treatment ·····						
Crops		NP	NPMg	NPK1	NPK1Mg	NPK2	NPK2Mg
Tomato	Yield			63,150	67,380		
	Yield incr.		—		4,230	_	—
	%				6.7		
Eggplant	Yield			43,500	45,570		
	Yield incr.		—		2,070	_	—
	%				4.8		
Cabbage	Yield	38,042	47,745	41,127	42,845	47,370	48,195
Ŭ	Yield incr.		9,703		1,718		825
	%		25.5		4.2		1.7
Chinese	Yield			63,094	65,625		
cabbage	Yield incr.	_	_		2,531	_	_
	%				4.0		

 Table 5. Balance of soil Mg with fertilizer application, kg/ha. Application Input/output Uptake balance rate Crops Treatment kg MgO/ha Sugarcane NPK1 0 102.0 -102.063.0 117.5 -54.5 NPK1Ma -130.0NPK2 0 130.0 NPK2Mg 63.0 137.0 -74.0 NPK1 0 19.4 -19.4 Cassava 40.5 19.9 +20.6 NPK1Mq

It is apparent that the problem of soil Mg deficiency has not been solved in the uplands of Guangxi province. As a result, sustained high yielding crop production cannot be achieved. Magnesium deficiency also reduces the effectiveness of other applied plant nutrients. Thus, the positive effects on yield and farmer income from balanced NPK fertilizer use cannot be brought into full play. Guangxi's development of its agricultural uplands requires attention to Mg fertilizer application. Otherwise, farmers will continue to struggle with poor NPK fertilizer use efficiency, low yields, poor crop quality, and lower profits. **BCI**

Tan Hongwei and Zhou Liuqiang are with the Soil and Fertilizer Institute, Guangxi Academy of Agricultural Sciences, Nanning, People's Republic of China. Du Chenglin is with the Institute of Soil Science, Academia Sinica.