Long-term Changes in Soil Fertility and Fertilizer Efficiency under Different Fertilizer Practices

By Zheng Tie-jun

This 12-year study was conducted under the direction of the Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences (CAAS). Its objective was to monitor long-term changes in soil fertility, fertilizer use efficiency, crop yield, and grain quality under various fertilizer management schemes. The study was conducted in Harbin on black soil, the most important soil type in Heilongjiang province, covering approximately five million ha.

Experimental Procedures

This long-term trial was initiated in 1980 at the Soil and Fertilizer Institute of the Heilongjiang Academy of Agricultural Sciences. Mean annual temperature for the area is 3.5° C, mean annual precipitation is 535 mm, and the frost-free period is about 135 days. From samples collected in 1979, soil pH was 7.2 and organic matter was 2.7 percent. Total nitrogen (N), phosphorus (P), and potassium (K) contents were 0.15 percent, 0.17 percent, and 2.5 percent, respectively. Available N, P and K contents were 151, 51 and 200 mg/kg, respectively.

Data in this paper span four cycles of a three-year wheat-soybeancorn crop rotation. Inorganic fertilizer was applied at 150-75-75 kg N- P_2O_5 - K_2O /ha for wheat and corn and 75-150-75 kg/ha for soybean. Farmyard manure (FYM) was applied at a rate of 18.6 t/ha with every corn crop. All fertilizers were applied in the fall after harvest. Plots were 168 m² in size and were not replicated.

Long-term Changes in Crop Yield

Zero Fertilization – In the plot receiving no fertilizer, the cumulative yields of wheat, soybean and corn consistently declined over 12 years (**Table 1**). The average change in the cumulative yield (Δ Y) between the three-year cycles was -8.1 percent, or -880 kg/ha. Wheat yields continually declined through the second, third, and fourth crop cycle, dropping 1,260 kg/ha from 1980 to 1989. Soybean and corn yields fluctuated, but both crops showed a negative trend. The second cycle soybean yield showed a slight increase over the first cycle, but this was followed by lower yield levels in the third and fourth cycles. Corn production was highly variable and followed an alternating yield pattern throughout the study.

Better Crops International Vol. 13, No. 2, November 1999

Applying Manure – The plot receiving only FYM also showed a tendency for lower yields over time (Table 2). The cumulative yield for wheat, soybean and corn was highest in the second cycle. However, this was followed by lower cumulative yield levels in the third and fourth cycles. The ΔY between the threeyear cycles was -0.4 percent, or -110 kg/ha. Wheat production showed an initial increase in the second cycle, followed by two successive cycles of declining yield. Soybean yields followed an alternating yield pattern throughout the study. Corn production

Table 1. Crop	yields as affe	ected by no f	fertilizer a	pplication.			
············ Yield, kg/ha ······							
Crop cycles	Wheat	Soybean	Corn	Cumulative yield, kg/ha			
1980	2,535						
1981 (I)		2,070					
1982			6,990	11,595			
1983	2,385						
1984 (II)		2,265					
1985			5,850	10,500			
1986	1,830						
1987 (III)		1,365					
1988			7,170	10,365			
1989	1,275						
1990 (IV)		1,935					
1991			5,745	8,955			
Overall production, kg/ha			•••••	41,415			
Average yield cl	hange (Δ Y)			-8.1%			

Table 2. Crop yields as affected by FYM application.								
·······Yield, kg/ha ······								
Crop cycle	Wheat	Soybean	Corn	Cumulative yield, kg/ha				
	2,745	2,010	7,350	12,105				
II	3,495	2,055	6,885	12,435				
III	2,445	1,290	6,900	10,635				
IV	1,635	1,890	8,250	11,775				
Overall production, kg/ha				46,950				
Average yield change (Δ Y)				-0.4%				

was lowest in the second and third crop cycles, but was highest in the fourth crop cycle.

Applying Commercial Fertilizer – Evidence for sustained yield improvement was found with all four treatments supplying N (**Table 3**). The NPK, NP, and NK treatments provided the highest overall production totals and positive ΔY values of 1.4, 3.6, and 3.4 percent, respectively. Reliance on N alone also sustained a positive ΔY of 3.3 percent. However, this practice produced a grain production level only slightly above the level achieved with FYM alone. Reliance on mineral P and K, alone or in combination, resulted in declining yields over time. The ΔY values for the P, K, and PK treatments were -5.5, -4.0, and -1.8 percent, respectively.

Table 3. Crop) yields as affe	cted by mir	neral fertiliz	er application.			
Treatment	····· Cumula I	ative yield p II	er crop cycle III	, kg/ha IV	Total production, kg/ha	(ΔY), %	
N P K NP NK PK	11,280 12,060 11,490 11,955 11,910 11,685	12,285 11,295 11,340 11,655 12,960 13,275	11,775 11,190 10,965 12,180 11,250 11,445	12,390 10,155 10,140 13,245 12,900 10,845	47,730 44,700 43,935 49,035 49,020 47,250	3.3 -5.5 -4.0 3.6 3.4 -1.8	
NPK	12,705	12,255	11,220	13,020	49,200	1.4	

Better Crops International Vol. 13, No. 2, November 1999

Combining FYM with Inorganic Fertilizer – Compared to inorganic fertilizer treatments (**Table 3**), FYM raised the yield levels for FYM-P, FYM-K, FYM-PK, and FYM-NP (**Table 4**). The FYM-NP combination resulted in the study's highest overall production and a positive ΔY of 4.8 percent. The beneficial effects of combining FYM with P, K and PK treatments are evident. These treatments are

Figure 1. Increases in soil organic matter content in a black soil over 12 years, Heilongjiang province.

obviously taking advantage of N being added to the system from the FYM. However, respective ΔY values of -5.2, -1.9 and 0.6 percent still question the sustainability of these treatments. The FYM-N treatment had a high yield in the final crop cycle, resulting in a ΔY of 5.4 percent, but it failed to improve overall grain production relative to inorganic N alone. No yield benefit was apparent with the combination of FYM with NPK despite a positive ΔY of 2.1 percent.

Long-term Changes in Soil Properties

Soil Organic Matter – Soils receiving no fertilizer or FYM showed no consistent changes in organic matter (0 to 20 cm depth) as they fluctuated within the range of 2.37 to 2.79 percent. Application of FYM once in every cycle increased organic matter content by 0.29 percent in 12 years (**Figure 1**). The NP fertilizer treatment was equally as effective and increased soil organic matter content by 0.30 percent in 12 years. In comparison, the FYM-NP combination increased soil organic matter content by 0.42 percent in 12 years.

Soil Nitrogen – Over 12 years, soils that did not receive any nutrients showed no significant changes in N content (0 to 20 cm depth). Application of N fertilizer alone resulted in an average soil N accumulation of 0.03 percent in 12 years. The balanced treatment of NPK increased soil N by 0.046 percent in 12 years. Results suggested little difference in hydrolyzed N (0 to 20 cm depth) among treatments, but did show a slight tendency for higher values in treatments containing inorganic N (data not shown).

lable 4.	Effect of	combinin	g FYM and r	nineral ferti	lizers on crop) yield.	
Treatmei	nt	 I	· Cumulative II	yield, kg/ha III	I IV	Overall production, kg/ha	(ΔY), %
FYM-N		11,685	11,940	10,710	13,305	47,640	5.4
FYM-P		12,765	12,105	11,595	10,860	47,325	-5.2
FYM-K		11,850	12,060	10,545	11,070	45,525	-1.9
FYM-NP		12,420	12,390	12,465	14,220	51,495	4.8
FYM-NK	(12,195	12,045	10,890	13,200	48,330	3.4
FYM-PK		12,105	12,915	11,340	12,165	48,525	0.6
FYM-NPI		12,780	12,120	10,710	13,200	48,810	2.1

Better Crops International Vol. 13, No. 2, November 1999 **Soil Phosphorus** – Soils that did not receive fertilizer or FYM showed an average decrease in available P equal to 0.17 percent annually. The 12-year duration of this study suggests a strong potential for the spread of P deficiency and lower crop production. Reliance on FYM alone resulted in

a rapid decline of available P equal to 3.5 mg/kg annually. Application of NK also appeared to accelerate soil P depletion as the final P level for the treatment was lower than the unfertilized treatments (**Figure 2**). These results show how soil P mining accelerates with application of other plant nutrients when no P is applied. This is a good case for using balanced fertilization. Long-term inclusion of P fertilizer (FYM-NP) successfully raised available soil P above the level measured at the study's inception. Continued fertilizer additions would eventually lead to the establishment of an adequate soil P level and a switch to a soil P maintenance strategy.

Soil Potassium – After 12 years, no significant effect on total soil K (0 to 20 cm depth) was observed in any treatment. This is a result of adequate natural soil K levels. All fertilizer treatments maintained soil K between 200 to 300 mg/kg. However, observations indicate soil not receiving fertilizer was slightly below this range. It should be noted that without continuous application of K, soil K will eventually drop below the critical level and cause reduced yields. Thus, monitoring the K status is important, especially as higher crop yields are obtained.

Conclusion

Continuous crop production over 12 years without the addition of either FYM or mineral fertilizer resulted in an average yield reduction of 8.1 percent. Reliance on FYM resulted in a lower rate of yield reduction of 0.4 percent. Such practices are detrimental to China's strategy for food security. The solution lies in the proper utilization of mineral fertilizers. Imbalanced fertilizer use resulted in lower crop production and plant nutrient losses capable of creating severe deficiencies and drastic yield reductions. In this study, N was the most yield-limiting macronutrient, followed by P. However, continued cropping without K fertilizer or FYM application could create another yield-limiting situation. A more intensive soil testing strategy is needed to monitor the soil fertility of Chinese soils. Such a strategy would ensure that all plant nutrients are built up and maintained at adequate levels. BCI

The author is with the Soil and Fertilizer Institute, Heilongjiang Academy of Agricultural Sciences, People's Republic of China.

Figure 2. Changes in available P content in a black soil over 12 years, Heilongjiang province.