Table 3. Chi-square test results of the effect of K application on the index of three cotton diseases.

Treatment, kg N-P ₂ O ₅ -K ₂ O/ha	Anthrac- nose	Root rot	Red leaf stem wilt
195-75-0	_	_	_
195-75-75	4.83*	3.21 ^{NS}	12.3**
195-75-150	5.20*	9.43**	18.9**
195-75-225	5.89*	10.38	30.6**
NS, *, ** = non-sign 1%, respectively.	nificant, significan	t at 5%, and signi	ficant at

Table 4.	plant o	of K on reducing death and lodging 1989 drought, Ì	j in corn
Treatment		Lodging, %	Premature death, %

73.0

1.3

13.2

200-90-0

240-90-270

Conclusion

Potassium fertilizer has proven to be extremely important for crop growth on Hunan's K-deficient upland soils. This has been manifested in higher crop yields, improved crop quality, and increased farmer profit when K fertilizer was applied compared to no K application, but with N and P fertilizer applied at optimal rates.

For the majority of crops grown on these soils, an application of 150 kg $\rm K_2O/ha$ was considered to be a minimum to achieve high crop yield and quality, while higher rates often proved better for the high K demanding crops. **BCI**

The author is Professor, Soil and Fertilizer Institute, Hunan Academy of Agricultural Sciences, Changsha, China.

India: Response of Some Rabi Pulses to Boron, Zinc and Sulfate Application in Farmer Fields

Series of field trials were conducted on calcareous soils in the northern part of Bihar. A high percentage of these soils exhibit sulfur (S), boron (B) and zinc (Zn) deficiencies. Test crops were chickpea, lentil and broadbean. Boron application at 2 kg/ha and Zn application at 5 kg/ha on chickpea produced grain yield responses of 750 (60 percent yield increase) and 400 (28 percent yield increase) kg/ha, respectively. Boron application rate of 1 kg/ha increased lentil yields by 300 kg/ha, or 24 percent. Broadbean yield response to S applied at a rate of 40 kg/ha was 700 kg/ha, a 32 percent increase. In addition to yield responses, plant uptake of all three nutrients was increased by fertilization. BCI

Source: Fertiliser News, Vol. 43 (11), p. 37, 39-40, November 1998.

