

Module 4.6-1 Economic optimum nitrogen rates for cotton on a silty clay loam in Alabama change little with changes in prices. In this example, though cotton and N prices varied significantly, they usually varied together, keeping the cost to price ratios relatively constant and the EONR relatively stable. Adapted from: Snyder, C.S. and W.M. Stewart. 2005. Using the most profitable nitrogen rate in your cotton production system. [On-line].

	Cotton Price						
N price	\$ 0.52/lb	\$ 0.62/lb	\$ 0.72/lb	\$ 0.82/lb			
(\$/lb)	Economic optimum N rate, Ib/A						
0.50	81	84	86	88			
0.55	79	82	85	87			
0.60	78	81	83	86			
0.65	76	79	82	85			
0.70	74	77	81	84			
0.75	72	76	80	83			

Submitted by S. Phillips, IPNI, USA, September 2011.

Module 4.6-2 Economically optimum rates of nitrogen for corn varied only slightly with market conditions over a 10-year period. In the west-central and northwest regions of Indiana, the average rate required to remove N limitations for corn following soybeans was estimated to be 171 lbs N/A. The economically optimum rate—defined as the rate at which the last increment of N fertilizer returns a grain yield increase large enough to pay for itself—depends on price ratio and is generally lower. Between 2000 and 2009 the price ratio between N fertilizer and corn grain (expressed as \$/lb N divided by \$/lb grain) ranged between 5 and 10 (a higher ratio reflects relatively more expensive fertilizer). Recommended rates within this range of price ratios varied as shown in the table below. Adapted from: Camberato et al. 2011. Nitrogen management guidelines for Indiana. [On-line].

	Grain price, \$/bu							
N cost/lb	\$2.80	\$3.36	\$3.92	\$4.48	\$5.04	\$5.60		
\$0.20	162	163	164	165	165	166		
\$0.30	158†	159	161	162	163	163		
\$0.40	153	156	158	159	160	161		
\$0.50	149	152	154	156	158	159		
\$0.60	145	148	151	153	155	156		
\$0.70	140	145	148	150	152	154		
\$0.80	136	141	145	147	150	152		
\$0.90	132	137	141	145	147	149		
\$1.00	127	133	138	142	145	147		

† Highlighted values represent EONR recommendations at price ratios (expressed as \$/lb N divided by \$/lb grain) between 5 and 10.

Submitted by S. Phillips, IPNI, USA, September 2011.