

Effects of fertilizer & organic resource management practices on crop productivity & NUE in Africa

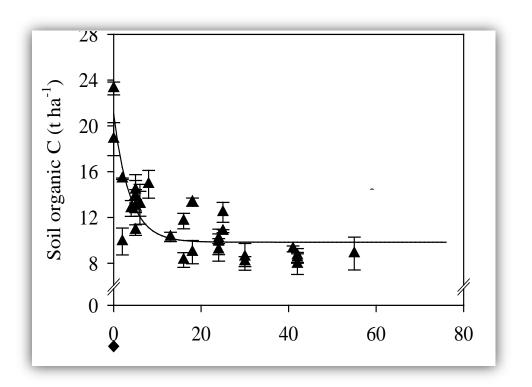
Shamie Zingore

IPNI Africa Program, Nairobi, Kenya

Regis Chikowo Soil Fertility Consortium of Southern Africa, University of Zimbabwe

Background

- Poor soil fertility is a major constraint to crop productivity in SSA
- Low fertilizer use
 - ■Unavailability
 - ☐ High costs
 - □Viability and risk
- Organic resources
 - □Limited availability
 - □Low quality
 - □High labour demand


N commonly the most limiting nutrient

Background

 Poor soil fertility is a major constraint to crop productivity in SSA

SOC depletion

N balances highly negative

Kenya	-46
Malawi	-67
Nigeria	-37

Low N use efficiency

Background

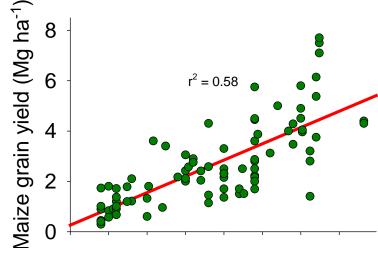
- Efficient use of nutrients in Africa critical to enhance crop productive
- Spatial variability in soil fertility at different spatial scales to due to inherent and management factors a major challenge

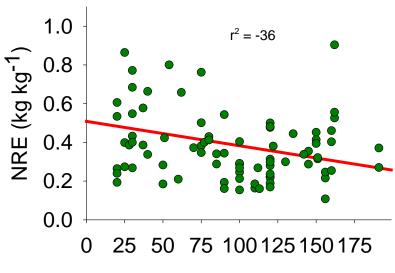
Study objective

- To review nutrient management options in SSA agriculture and associated nutrient use efficiencies
- A vital step for magnifying cropping systems or practices that offer best opportunities for intensification

Study approach

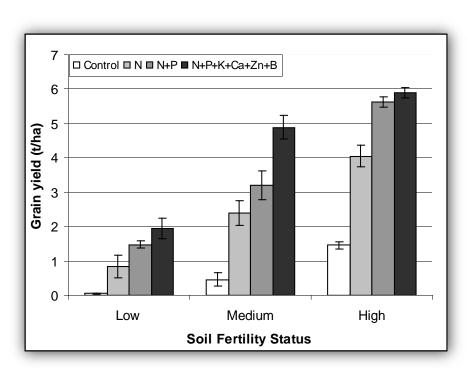
- Literature review based on published papers (1990-2009).
- Focused on maize-based system.
- Annual rainfall >700 mm
- Limited analysis to studies that allowed analysis of:
 - □Indigenous N supply
 - □Crop N uptake
- Nutrient management systems of focus
 - Fertilizer in maize cropping systems
 - Integrated fertilizer and manure
 - Fertilizer in maize-grain legume




Study approach

• Fields categorized into low, medium and high fertility based on indigenous N supply potential.

Overall fertilizer N recovery efficiency (NP treatments)



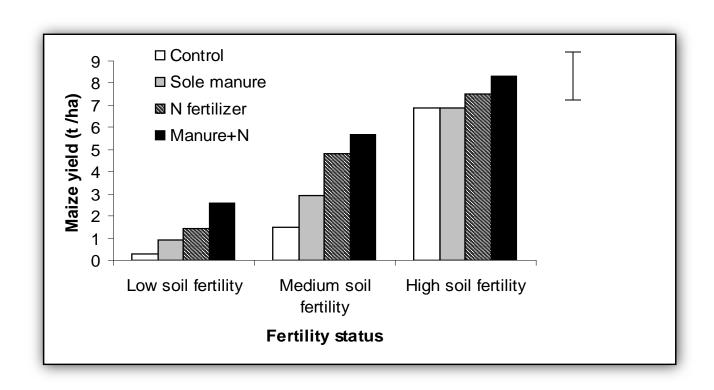
N applied (kg ha⁻¹)

- Maize productivity and NRE highly variable
- General decrease in NRE with increasing N application rate

Enhancing N use efficiency Soil fertility status and balancing nutrient supply

- Sole N give the highest yield increases
- Multi nutrient application required to reduce the yield gap between high and medium fertility soils
- Attainable yields very low in low fertility fields

Yields and N recovery efficiency from livestock manure


	Min	Max	Mean	CV
N applied (kg ha ⁻¹)	25	433	132	59
Maize yields (Mg ha ⁻¹)	0.4	5.9	2.4	52
NRE (kg kg ⁻¹)	-0.1	0.63	0.25	77

Yields and N recovery efficiency in grain legume rotations

	Min	Max	Mean	CV
N applied (kg ha ⁻¹)	13	223	146	78
Maize yields (Mg ha ⁻¹)	0.3	6.2	2.1	68
NRE (kg kg ⁻¹)	0.05	0.45	0.11	71

Integrated N fertilizer and manure

Conclusions

- N efficiencies in maize based systems cropping systems in SSA are diverse
 - Variable soil fertility conditions
 - Nutrient management practices
- Degraded soils that respond poorly to nutrient management a major challenge.
- Flexible systems of nutrient management should be tailored to farmers' access to resources and varying soil fertility conditions on the basis of:
 - Appropriate N application rates
 - Balanced nutrient management
 - Combination of N fertilizers with manure
 - Integration of grain legumes

Thank you

