

Nitrogen Management to Help Reduce GHG Emissions

C.S. Snyder, A.M. Johnston, and P.E. Fixen

Global Human Family and N₂O Emissions

- Global population: 9 billion expected by 2050
- Agriculture accounts for 10 to 15% of global GHGs
 - Agriculture: ~ 60% of N₂O and 50% of CH₄ (Flynn & Smith, 2010)
 - China>India>EU-25>USA>Brazil: largest agricultural emitters
- Fertilizer N use and application:
 - Canada 47%, U.S. 28%, EU-15 27% of direct ag soil management related N₂O emissions in 2007 (Environ. Canada, U.S. EPA, and EEA; 2009)
 - India 60% of direct and indirect N₂O emissions from all economic sectors in in 2005 (Garg et al. 2006)
 - Global fertilizer N use: 110 MT expected by 2013 (IFA, 2010)
- Agricultural N₂O emissions expected to increase by 35 to 60% by 2030, in association with increased fertilizer N use and manure production (Smith et al., 2007, IPCC)

Global Nitrogen Use Efficiency, Expressed as Apparent N Recovery (RE_N)

- ≤50% N use efficiency globally by most crops (Balasubramanian et al., 2004; Ladha et al., 2005)
- typical on-farm RE_N (Dobermann and Cassman, 2002)
 - only 30% in rice and 37% in maize,
 - with good management RE_N could be 50 to 80%
- in cereal crop research
 - total RE_N from a one-time application of N averages 50 to 60%, and 40 to 50% under most on-farm conditions (Dobermann, 2007)

Kitchen and Goulding (2001) *in*Nitrogen in the Environment: Sources, Problems and Management

- "nitrogen use efficiency ...rarely exceeds 70% often ranges from 30-60%"
- "conversion of N inputs to products for arable crops can be 60-70% or even more"

U.S. EPA SAB Integrated N Committee report on reactive N (May 28, 2010 DRAFT): "... finds that crop N-uptake efficiencies can be increased by up to 25% over current practices through a combination of knowledge-based practices and advances in fertilizer technology (such as controlled release and inhibition of nitrification)."

"Back of the Envelope" Calculations for U.S.

- 3.6% of U.S total GHGs = Ag soil management N₂O emissions
 - $-6,956.8 \text{ Tg CO}_2\text{-e} \times 0.036 = 250 \text{ Tg CO}_2\text{-e} (0.25 \text{ Gt CO}_2\text{-e})$
- Potential direct N₂O emission reduction impacts with improved crop N uptake
 - if one assumes that a 25% increase from current RE_N translates to a 25% reduction in ag soil management N₂O emissions
 - $0.75 \times 250 = 188 \text{ Tg CO}_2\text{-e} (0.19 \text{ Gt CO}_2\text{-e})$
 - or about 2.7% of total annual CO₂-e GHG emissions
- With such a small potential impact, why is there so much focus on agriculture's fertilizer N consumption?
 - potential impact of larger combined direct and indirect N₂O emissions
 - "bang for the buck" in trading and mitigation schemes (i.e. 296x
 CO₂-e emission factor for N₂O)

N₂O Emissions from Global Fertilizer N Consumption, with IPCC 1% Emission Factor

	1990	1995	2000	2005
	m	nillion metr	ic tons (M ⁻	Γ)
Fertilizer N	76.78	78.23	82.07	92.93
N ₂ O (using 1% N ₂ O-N EF)	1.21	1.23	1.29	1.46
IPCC N ₂ O, CO ₂ -equiv.	357	364	382	432
Global total N ₂ O from all sources, CO ₂ -e	2,871	2,915	3,114	3,286
Global total GHGs from all sources, CO ₂ -e	39,000		41,382	44,153
Fertilizer N ₂ O (CO ₂ -e) as % of global total CO ₂ -e N ₂ O	12	12	12	13
Fertilizer N ₂ O (CO ₂ -e) as % of global total CO ₂ -e GHGs	0.92		0.92	0.98

Fertilizer N Use Efficiency is Affected by

- N supply from:
 - -Soil
 - Fertilizer
 - Other inputs
- Crop N uptake

- N losses from the soil–plant system
 - Volatilization, leaching, runoff, denitrification (and nitrification)
- All are affected by cropping system management and environmental conditions

Cropland Management Measures to Help Mitigate GHGs

 Cropland management, which includes nutrient management, has a GHG mitigation potential approaching 1,600 MT CO₂-equivalent/yr

	Mitig	ative effec	ts ^a	Net mitigation ^b (confidence)		
Examples	CO2	CH ₄	N ₂ O	Agreement	Evidence	
Agronomy	+		+/-	***	**	
Nutrient management	+		+	***	**	
Tillage/residue management	+		+/-	**	**	
Water management (irrigation, drainage)	+/-		+	*	*	
Rice management	+/-	+	+/-	**	**	
Agro-forestry	+		+/-	***	*	
Set-aside, land-use change	+	+	+	***	***	

Global Nutrient Management Potential to Mitigate GHGs from Croplands, reported by Flynn and Smith, 2010

Climate Zone	CO ₂	CH ₄	N ₂ O	GHG sum	
	mean	mean	mean	mean	GHG range
Cool dry	0.26	0	0.07	0.33	-0.21 - 0.71
Cool moist and warm moist	0.55	0	0.07	0.62	0.02 - 1.42
Warm dry	0.26	0	0.07	0.33	-0.21 - 1.05

"Mean and uncertainty for change in soil C, N₂O and CH₄ emissions are at the climate region scale, and are not intended to reflect finer scales such as individual farms."

4R Nutrient Stewardship

Know your fertilizer rights

By Tom Bruulsema, International Plant Nutrition Institute, Guelph, ON, Canada; Jerry Lemunyon, USDA-NRCS, Fort Worth, TX; and Bill Herz, The Fertilizer Institute, Washington, DC

Crops & Soils 42(2): Mar-Apr 2009

The four fertilizer rights: Selecting the right <u>source</u>

By Robert Mikkelsen, International Plant Nutrition Institute, Merced, CA; Greg Schwab, University of Kentucky, Lexington; and Gyles Randall, University of Minnesota, Waseca

Crops & Soils 42(3): May-Jun 2009

The four fertilizer rights: timing

By W.M. Stewart, International Plant Nutrition Institute, Norcross, GA; J.E. Sawyer, Iowa State University, Ames, IA; and M.M. Alley, Virginia Tech, Blacksburg, VA

Crops & Soils 42(5): Sep-Oct 2009

http://www.ipni.net/4r

Selecting the right fertilizer rate: A component of 4R nutrient stewardship

By S.B. Phillips, International Plant Nutrition Institute, Owens Cross Roads, AL; J.J. Camberato, Purdue University, West Lafayette, IN; and D. Leikam, Fluid Fertilizer Foundation, Manhattan, KS

Crops & Soils 42(4): Jul-Aug 2009

Know Your Fertilizer Rights: Right Place by T.S. Murrell (IPNI), G.P. Lafond (AAFC), and T.J. Vyn (Purdue U.)

Crops & Soils 42(6): Nov-Dec 2009

Soil and Fertilizer Management Can Help Reduce GHG Emissions

Through wider implementation of "4R" BMPs:

But requires

- more research to evaluate optimum "Rs"
- more education and technology transfer to hone nutrient management skills of crop advisers and farmers

-And should be coupled with

- appropriate conservation tillage practices
- optimum irrigation practices, and soil drainage management
- improved genetics and seed technology

Intensified Fertilizer BMP Education, Outreach, and Technology Transfer

Fertilization and Organic Matter Effects on Total Soil Carbon after 19 Years in Rice-Wheat Rotation India

- •FYM= farm yard manure (7.5 Mg ha⁻¹), PS=paddy straw (10 Mg ha⁻¹), GM=green manure (8 Mg ha⁻¹), all on wet-weight basis
- •120–60–60 kg ha⁻¹ (N–P₂O5–K₂O) for rice and 100–60–40 kg ha⁻¹(N–P₂O5–K₂O) for wheat

Fertilizer N Effects on Profile SOC After 39 Years of Continuous Corn with a Winter Cereal Cover Crop

P and K Fertility Condition of Sampled Soils in the U.S., China, and India and Median Soil Test Levels in North America (adapted from Fixen et al. 2005)

	Plant avai	lable soil P		Plant avai				
Level	U.S. China		India	U.S. China		India		
	% of soil s	amples		% of soil samples				
Low	24	46	46	14	58	13		
Medium	23	25	49	29	18	53		
High	53	29	5	57	23	34		

North America ^a						
	Median soil test P	Median soil test K				
	(mg kg ⁻¹)	(mg kg ⁻¹)				
2001	27	154				
2005	31	154				
2010	25	150				

Inadequate, or below optimum, P and K fertility limits crop production in much of the world and may also limit crop N uptake efficiency

% of soil samples with \leq		% of soil samples with \leq	
25 mg kg ⁻¹ soil test P in	50	160 mg kg ⁻¹ soil test K 55	;
2010		in 2010	

Effects of Proper K Fertilization on Apparent N Recovery by Maize

(Johnson et al., 1997. Ohio, U.S.)

Balanced Fertilization Effects on Apparent N Recovery by Maize (assuming 25 kg of N uptake per tonne of grain (Gordon, 2005. Kansas, U.S.))

Agriculture, Ecosystems and Environment (2009) 133:247-266.

Contents lists available at ScienceDirect

Agriculture, Ecosystems and Environment

journal homepage: www.elsevier.com/locate/agee

Review

Review of greenhouse gas emissions from crop production systems and fertilizer management effects

C.S. Snyder a,*, T.W. Bruulsema b, T.L. Jensen c, P.E. Fixen d

Fertilizer N : source, rate, timing, and place of application

^a International Plant Nutrition Institute, P.O. Drawer 2440, Conway, AR 72033, USA

^b International Plant Nutrition Institute, 18 Maplewood Drive, Guelph, Ontario, Canada N1G 1L8

CInternational Plant Nutrition Institute, 102 - 411 Downey Road, Saskatoon, Saskatchewan, Canada S7N 4L8

International Plant Nutrition Institute, 2301 Research Parkway, Suite 126, Brookings, SD 57006, USA

Range of N₂O Emission Among N Sources can Vary Greatly

- Report 1 (Stehfest & Bouwman, 2006)
 - 0 to 46% of applied N
- Report 2 (Granli & Bockman, 1994)
 - 0 to 7% of applied N
- **Report 3** (Eichner, 1990)
 - 0 to 7% of applied N

Report 1

Median among N sources ranged from:0.26 to 1.56 kg of N/ha

Summary of N₂O Emissions Induced by Common Fertilizer N Sources (based on

Bouwman et al. (2002a, 2002b) and Stehfest and Bouwman (2006))

	Mean fertilizer induced emission ¹			ced median emission ²
		N ₂ O as % of		kg N ₂ O-N
N source	n	applied N	n	ha ⁻¹
calcium ammonium				
nitrate	61	0.7	73	$1.56a^{3}$
ammonium nitrate	59	0.8	131	1.12a
anhydrous ammonia	38	0.9	38	1.04a
nitrate-based				
fertilizers ⁴	53	0.9	53	0.80b
urea ammonium				
nitrate (solutions)	37	1.0	40	0.78b
urea	98	1.1	131	0.96b
ammonium-based				
fertilizers ⁵	59	1.2	74	0.82b
IPCC default		1		

¹Bouwman et al. 2002a. 2002b

² Stehfest and Bouwman 2006

³ Values followed by a common letter are not significantly different, based on two-tailed statistical tests (Stehfest and Bouwman 2006)

⁴Includes potassium nitrate, calcium nitrate, sodium nitrate (Bouwman et al. 2002a, 2002b)

⁵Includes ammonium bicarbonate, ammonium chloride, ammonium sulfate (Bouwman et al. 2002a, 2002b)

Corn grain yield (Mg/ha) is shown near the bottom of each bar

The Key is to Limit Potential "Surplus N"

"... agricultural management practices to reduce N_2O emissions should focus on optimizing fertilizer-N use efficiency under median rates of N input, rather than on minimizing N application rates."

Earlier Work with Nitrification Inhibitors and PCU Sources of N on N₂O Emissions

- Bronson, Mosier, and Bishnoi (1992) corn (Colorado)
 - Nitrification inhibitor (nitrapyrin) reduced urea emissions 40-65%
- Delgado and Mosier (1996) barley (Colorado)
 - 0 to 21 d after fertilization, emissions reduced by 82% and 71% with nitrification inhibitor (DCD) and PCU
 - N₂O emission was higher remainder of season with PCU
- Shoji, Delgado, Mosier, and Miura (2001)
 - barley (Colorado)
 - nitrification inhibitor (DCD) and PCU (Meister N) reduced N₂O emissions from urea by 81% and 35% (low emissions: 0.07, 0.24, 0.37% of N applied for DCD, PCU and urea treatments)
 - corn on a loamy soil (lysimeter in Japan)
 - total N₂O emissions reduced 66% with PCU vs. urea

Timing of Application

- Saskatchewan, Canada
 - Hultgreen and Leduc (2003): emissions of N₂O were lower following spring N fertilizer application than following autumn application, with canola, flax, and wheat
- Alberta, Canada
 - Hao et al. (2001): wheat and canola @100 kg N/ha, significantly lower N₂O emissions with spring than with fall fertilizer N
- Midwest U.S. ?
 - Millar et al. (2010): synchronous timing of N with plant N demand "is an important factor in determining soil N availability and, potentially, emissions of N₂O from row crop agriculture".
 - •Mean reductions in N₂O emissions meta analyses (Akiyama et al. 2010.Global Change Biology 16:1837–1846):
 - •nitrification inhibitors 38%
 - •polymer coated urea 35%

Place or Placement

- Breitenbeck and Bremner (1986) in Iowa, U.S.
 - anhydrous NH₃ (112 kg N/ha) injected at 30 cm had 107 and 21% greater N₂O emissions than injections at 10 and 20 cm.
 - effects of depth of application of anhydrous NH₃ on emission of N₂O was less @ of 225 kg N/ha
- Drury et al. (2006) in Ontario, Canada
 - ammonium nitrate (160 kg N/ha) sidedress at 2-cm depth had emissions 26% lower (2.8 kg N₂O-N/ha/yr), than with 10-cm placement (3.8 kg N₂O-N/ha/yr)
- Hultgreen and Leduc (2003) in Saskatchewan, Canada
 - urea banded below and to the side of the seed-row had lower N₂O emissions compared to surface broadcast urea in 2 of 3 years

Costs Associated with Reductions of CO₂-e in Irrigated Corn Systems (CO)

Is Lower Input, Less Intensive Ag the Answer?

Table 3Comparison of selected agricultural cropping systems for net global warming potential (GWP).

Cropping system	GWP in	GWP in CO ₂ equivalents (kg ha ⁻¹ year ⁻¹)							Mean o	crop yields	(t ha ⁻¹)
	Soil C ^b	N fert.c	Lime	Fuel	N ₂ O	CH ₄	Net GWP	(Gcal ha ⁻¹ year ⁻¹)	Corn	Wheat	Soybean
Robertson et al. (2000)—Michigan (9-	year study)										
Corn–soybean–wheat rotation											
Conventional tillage	0	270	230	160	520	-40	1140	12	5.3	3.2	2.1
No-till	-1100	270	340	120	560	-50	140	13	5.6	3.1	2.4
Low-input with legume cover crop	-400	90	190	200	600	-50	630	12	4.5	2.6	2.7
Organic with legume cover crop	-290	0	0	190	560	-50	410	9	3.3	1.6	2.7
Perennial crops											
Alfalfa	-1610	0	800	80	590	-60	-200				
Poplar	-1170	50	0	20	100	-50	-1050				
Late succession forest	0	0	0	0	210	-250	-40				
Adviento-Borbe et al. (2007)—Nebrask	ka (6-year s	tudy: non-ir	nversion o	leep till sy	rstem)						
Continuous corn at BMP	-1613	807	220	1503	1173	-110	1980	48	14.0		
Continuous corn—intensive	-2273	1210	330	1833	2090	-110	3080	51	15.0		
Corn-soybean rotation at BMP	1100	293	220	1283	917	-73	3740	35	14.7		4.9
Corn-soybean rotation—intensive	-73	660	330	1613	1247	-37	3740	37	15.6		5.0

^a Food energy calculated from crop yields and USDA national nutrient database http://riley.nal.usda.gov/NDL/index.html.

^b Estimate of net soil C storage are based on change in soil C measured to a depth of 7.5 cm in the Michigan study and 30 cm in the Nebraska study. Shallower sampling depths tend to upwardly bias the C sequestration estimates in no-till systems.

^c Estimated GWP associated with fertilizer N manufacture and transport was 4.51 kg CO₂ kg⁻¹ N in the MI study and 4.05 in the Nebraska study.

More Intensive Systems Can Help Lower GWP per Unit of Food Produced - Ecological Intensification -

State	Rotation & System	Tillage	Food Yield, Gcal/ha/yr	
MI	C-S-W	СТ	12	
MI	C-S-W	NT	13	
MI	C-S-W low input w/legume	СТ	12	
MI	C-S-W organic w/legume	СТ	9	
NE	C-C BMP	СТ	48	
NE	C-C intensive	СТ	51	
NE	C-S BMP	СТ	35	
NE	C-S intensive	СТ	37	

More Intensive Cropping Systems Can Help Lower GWP per Unit of Food Produced

State	Rotation & System	Tillage				Food Yield, Gcal/ha/yr		*		N ₂ O GWP/Food Yield	Net GWP/Food Yield
MI	C-S-W	СТ		12		43	95				
MI	C-S-W	NT 13		13 43		11					
MI	C-S-W low input w/legume	СТ		12		12 50		53			
MI	C-S-W organic w/legume	СТ		9		62	46				
NE	C-C BMP	СТ		48		24	41				
NE	C-C intensive	СТ	4X more	51	•••	41	60				
NE	C-S BMP	СТ	food	35		26	107				
NE	C-S intensive	СТ		37		34	101				

	Real W	/orld (RW)	Alternative world (AW1)	Alternative world (AW2)	
	Crop producti	on intensification	Crop production extensification		
	1961	2005	2005	2005	
Standard of living		improved	same as RW	same as 1961	
Crop yield, t/ha	1.84	3.96	1.84	1.84	
Crop production, million tons	1,776	4,784	4,784	3,811	
Agricultural tractors, million	11.3	28.5	28.5 ¹	23.7	
Irrigated area, million ha	139 284		284 ¹	298	
Fertilizer (N-P ₂ O ₅ -K ₂ O)	32	136	32	32	
application rates, kg/ha					
Global fertilizer consumed,	31	165	88	67	
million tons					
Cropland area expansion since	-	248	1,761	1,111	
1961, million ha					
Net increase in GHG	Approx.	100x			
emissions compared to		O ₂ -e GHG		317	
RW, Gt CO₃e	emission	s in U.S			

¹ AW1 conservatively assumes machinery use and irrigation area remained the same as in the RW.

Each dollar invested in higher crop yields has resulted in 68 fewer kg of C (249 kg CO₂e) emitted.

Total global GHGs in 2006 = 41,755 Mt CO_2e (or 41.76 Gt CO_2e)

GHG Emissions – Ag Mitigation Protocol

- Nitrous Oxide Emission Reduction Protocol
 - Approved Alberta, Canada (Oct. 2010)
 - Under development eastern Canada
- Climate Action Reserve Scoping Meetings
 - Chicago, IL; Modesto, CA; Washington, DC (Oct. 2010)
- American Carbon Registry (Nov. 23, 2010)
 - approves innovative agriculture sector methodology for GHG emission reductions through changes in fertilizer management

June 2010

CONCLUDING STATEMENTS

- Balanced fertilization enhances N use efficiency and effectiveness
- Appropriate fertilizer N use increases crop biomass to help restore/maintain/increase soil organic carbon (SOC)
- Reductions in soil disturbance and maintenance of crop residue on soil surface through conservation or reduced tillage can increase SOC

CONCLUDING STATEMENTS

- N₂O emissions vary among N sources depending on site-specific conditions, weather, and cropping systems (crops, rotations, tillage)
- Intensive crop management (ecological intensification) does not necessarily increase GHG emissions, especially per unit of food produced
- Intensive crop management, using researchbased fertilizer management, has resulted in avoidance of enormous GHG emissions – a critical provision of ecosystem services

Better Crops, Better Environment ... through Science

www.ipni.net