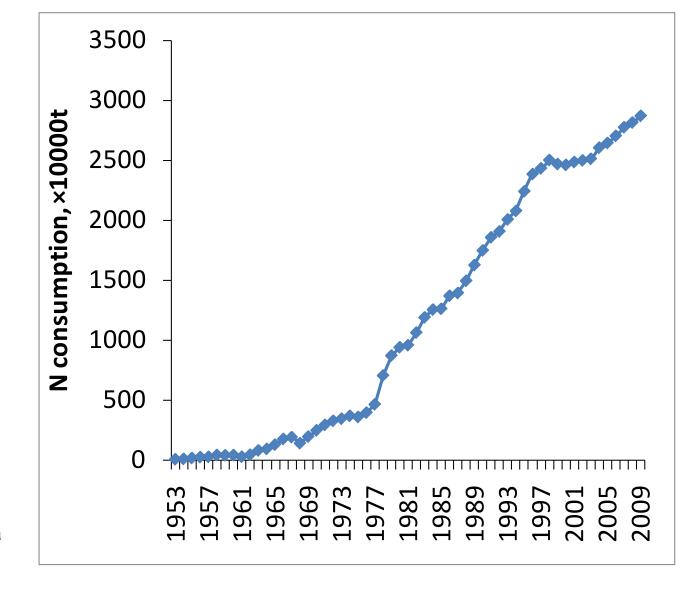
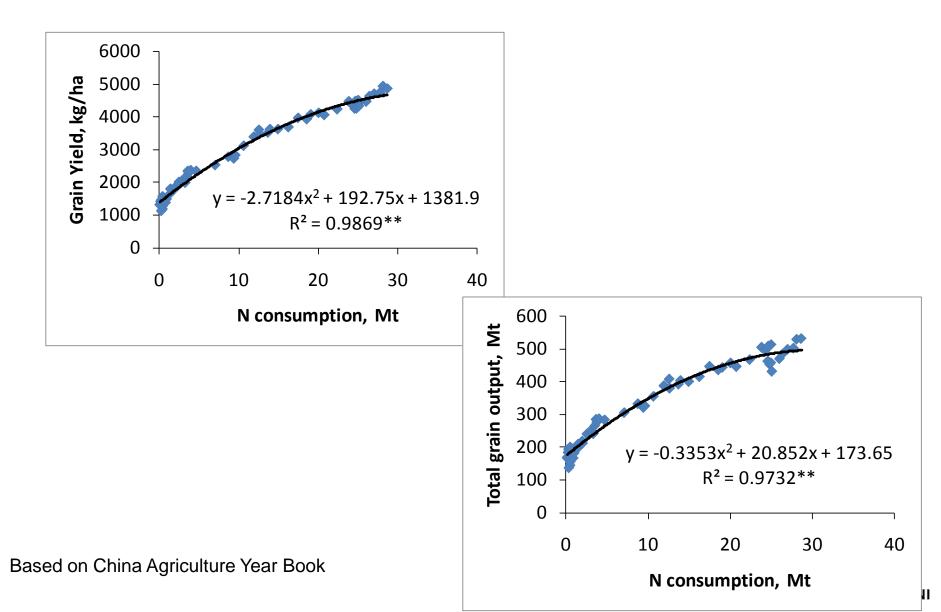


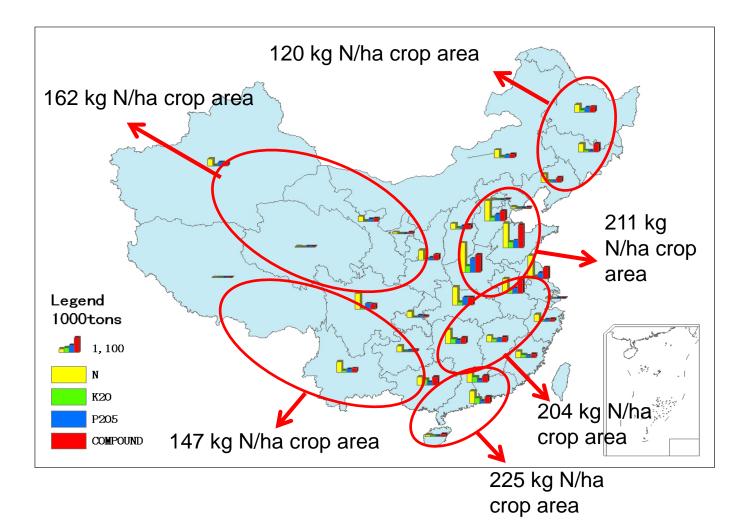
NITROGEN FERTILIZER USE AND GRAIN PRODUCTION IN CHINA


Shutian LI, Jiyun JIN IPNI China Program

Dec. 5, 2010, New Delhi


Fertilizer N consumption

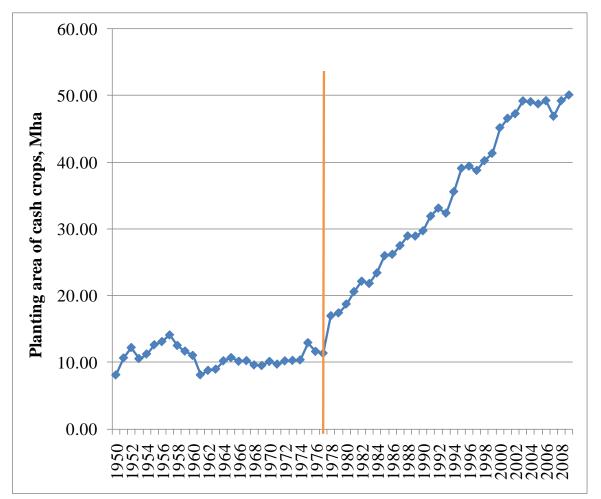
Fertilizer N consumption from 1953 to 2008



Source: China Agriculture Year Book

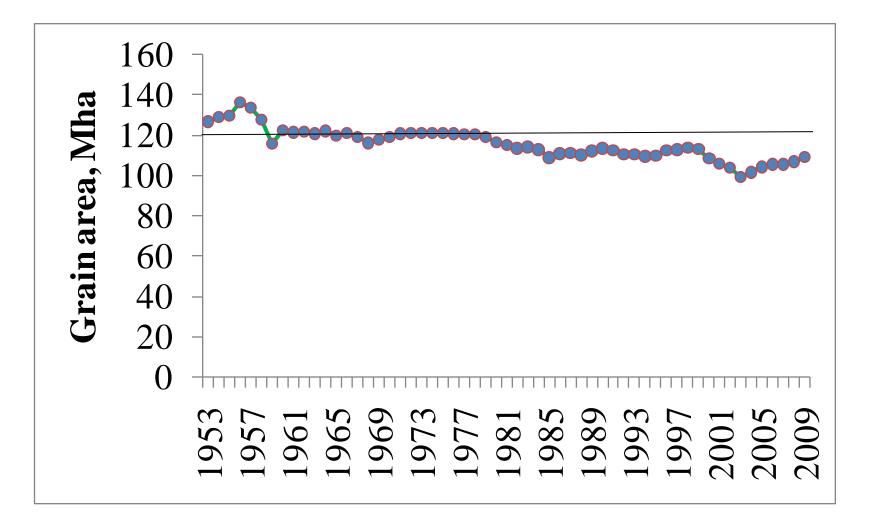
Relationship between N consumption and grain yield

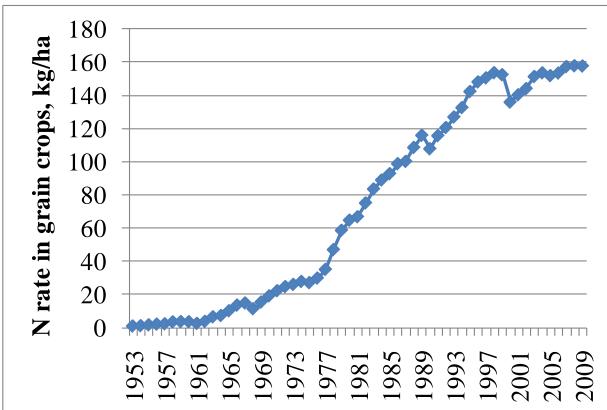
Chemical fertilizer consumption and distribution in China



Source: China Agriculture Year Book

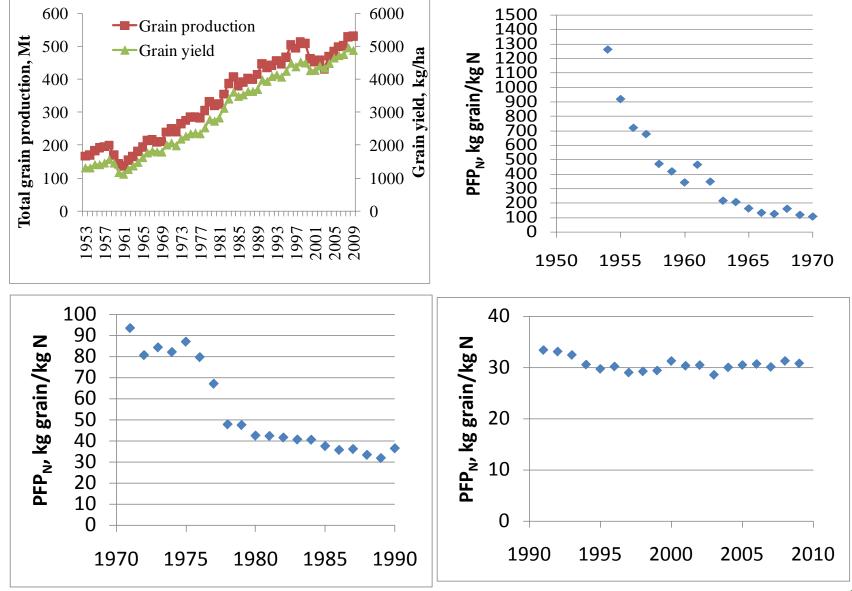
Area of cash crop increased rapidly since 1978

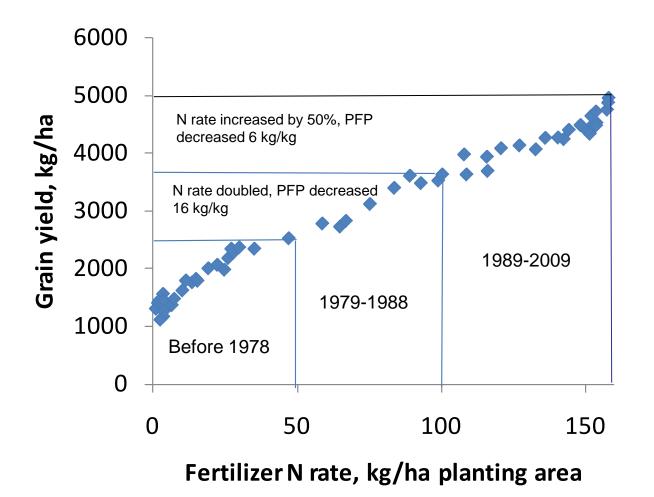

Area of cash crops including cotton, sugar crops, oil crops vegetables and fruits increased rapidly since 1978. Before 1978, the percentage of cash crops was 5-8% of total crop area, but increased to more than 30% now.


Changes of planting area of grain crops in China

Fertilizer N rate in grain crops

- According to the changes of crop area, assuming fertilizer used in grain crops was 90% before1978, 80% from 1979 to 1989, 70% from 1990 to 1999, 60% since 2000.
- The mean calculated N applied in grain crops increased and in 2009 the rate was 158kg/ha of crop area.


Source: China Agriculture Year Book


N use efficiency in grain crops

Changes of partial factor productivity of fertilizer N since 1950

Based on China Agriculture Year Book

The relationship between average cereal yields and average fertilizer-N use

Based on China Agriculture Year Book

Levels of cereal production, N fertilizer use on cereals, and cereal N use efficiency by world regions

Country	Cereal yield, t/ha	N rate, kg/ha	PFP _{N,} kg/kg
¹ China	4.9	158	31
² North Am	5.1	112	45
² NE Asia	6.1	89	71
² W Europe	5.5	113	59
² E Europe, C Asia	2.1	25	90
² Ocean	1.9	48	46
² Africa	1.1	9	123
² W Asia NE Africa	2.3	68	34
² South Asia	2.4	58	44
² SE Asia	3.2	65	53
² East Asia	4.8	155	32
² Latin Am	2.9	55	55
² World ¹ Data of China was cacula	3.1	70 grigulturg Yoor Boo	44

¹Data of China was caculated based on China Agriculture Year Book.

² Dobermann, 2006 (invited paper)

$\begin{array}{c} \mbox{Changes of a gronomic efficiency of } N \; (AE_N) \\ \mbox{in main grain crops in China} \end{array}$

Crops	1958-1962 ¹		1981-1983 ¹		2002-2007 ²	
	N rate kg/ha	AE _N kg grain/kg	N rate kg/ha	AE _N kg grain/kg	N rate kg/ha	AE _N kg grain/kg
Rice	45-60	15-20	126	9.1	188	11.5
Wheat	45-60	10-15	117	10.0	193	10.5
Maize	45-60	20-30	124	13.4	224	9.6

¹Lin and Li, 1989

² IPNI China program unpublished data

Changes of yield response to N fertilizer (kg/ha)

Crops	1958-1962 ¹	1981-1983 ¹	2002-2007 ²
Rice	675-1200	1140	2369
Wheat	450-900	1170	1911
Maize	900-1800	1665	2092

¹Lin and Li, 1989

² IPNI China program unpublished data

N recovery efficiency in main grain crops (2002-2007)

Crops	Crops Trial		AE _N	RE _N	
Crops	No.	kg/ha	kg grain/kg N	%	
Rice	58	2369	11.5	27.2	
Wheat	64	1911	10.5	43.8	
Maize	70	2092	9.6	32.4	

Sources: IPNI China program unpublished data

N use efficiency in different regions: AE=11-24kg/kgN, RE=0.31-0.68

Region/crop	N rate	RE _{15N}	RE _N	PE _N	AE _N	PFP _N
when sees as assoc much w	kg/ha	50 <u>0000000</u> 00		kg/kg		
Research station to	rials (stat	ionary tr	atment	plots) ¹	2	
Africa	139	0.37	0.63	23	14	39
Europe	100	0.61	0.68	28	21	50
America	111	0.36	0.52	28	20	50
Asia	115	0.44	0.50	47	22	54
Average		0.44	0.55	41	21	52
Maize (rainfed & irrigated)	123	0.40	0.65	37	24	72
Rice (irrigated)	115	0.44	0.46	53	22	62
Wheat (rainfed and irrigated)	112	0.45	0.57	29	18	45
On-farm studies	(non-stati	ionary tre	atment	olots)		timed for
Maize, USA (rainfed & irrigated) ²	158	acitemus	0.36	33	12	61
Maize, USA (irrigated) ³	142	n ortgally is	0.57	41	23	94
Maize, Indonesia (rainfed & irrigated) ⁴	200	and of a set	0.37	46	17	46
Rice in S, E and SE Asia (irrigated) ⁵	117	-	0.31	39	12	49
Rice in West Africa (irrigated) ⁶	106		0.36	47	17	46
Wheat in North India (irrigated) ⁷	134	bellineb w	0.34	32	11	44

RE_{15N} – average N recovery efficiency measured with the ¹⁵N isotope dilution method. All other N use efficiency terms – difference method, as described in Table 1. Dobermann, 2007

PNI

- 1. Agronomic efficiency (AE) of grain crops in China is about 10kg grain/kg N
- 2. Agronomic efficiency of N (AE-N) in China is about half of the world average;
- **3.** Crop recovery efficiency (RE) of the first crop in China is about 15-20 lower than world average;
- **4.** The low N efficiency in China is due to high N rate for high yield production, and improper use of fertilizers;
- 5. It is important to further improve fertilizer use efficiency in China for sustained increase of crop production;
- 6. With the highly intensified cropping systems in China, further improvement of fertilizer use efficiency is a big challenge, but can be done with advances in fertilization related science and technology.

2010/12/8

Strategy to improve N use efficiency in China

Technology development to improve nutrient use efficiency

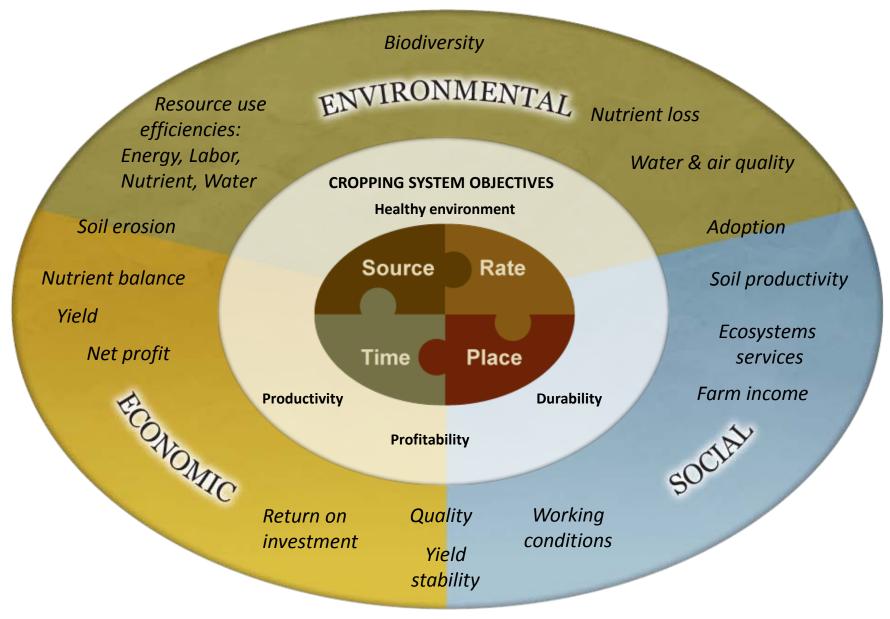
- Soil testing and fertilizer recommendation
- Use of organic resources
- Best management practices (BMPs)
- Slow/controlled release fertilizers
- Fertigation

Develop different nutrient application strategies based on soil fertility

- If N deficient or in low organic matter, then fertilization to increase yield and build up soil fertility
- If adequate, then fertilization to maintain soil fertility
- If over fertilized and accumulated nitrate in soil profile, reduced fertilizer N and deplete nutrients in soil.

Fertile, productive, healthy crop land will be developed.

Made full use of organic sources of N


Estimated organic fertilizer sources in China

Sources	Amount (Mt)	N (Mt)
Animal waste	2909.65	13.95
Straw	810.90	7.55
Cake manure	26.27	1.56
Green manure	100.00	0.50
Total	3846.83	23.56

(Li et al., unpublished)

4R Nutrient Stewardship

Thanks and welcome comments

IPNI Better Crops, Better Environment ...through Science