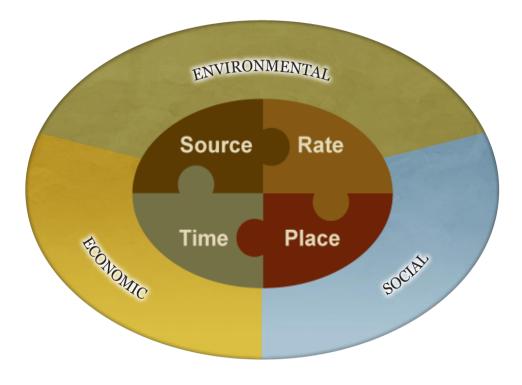
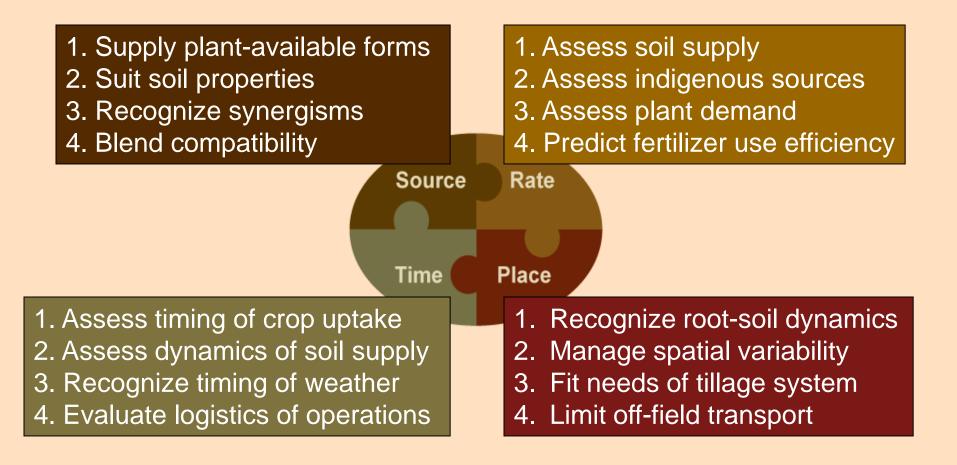

N2010 – 5th International Nitrogen Conference New Delhi, India 3-7 December 2010

Fertilizer Management and Nitrogen Use Efficiency

Tom Bruulsema, Director, Northeast Region, North America Program, IPNI, Guelph, Ontario, Canada

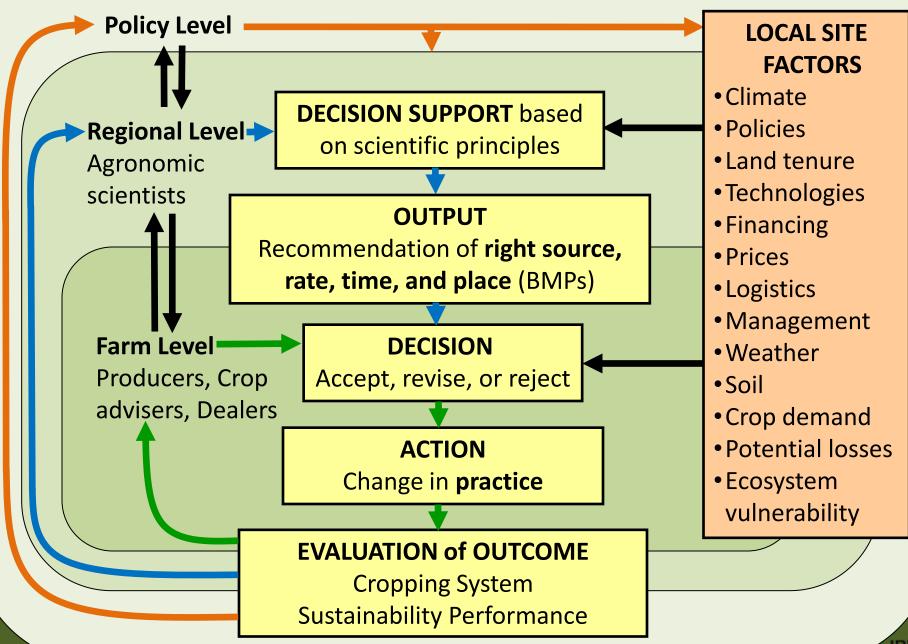

Outline

- Nutrient Stewardship for N Management
- Nitrous Oxide Emission Reduction Protocol (NERP)
 - Eastern Canada
- N use efficiency
- Benefits to society


Principles of 4R Nutrient Stewardship

- Stakeholders choose goals
- Producers choose practices (S-R-T-P)
- Practices to achieve goals are specific to site, crop and weather
- Science links practices to goals

The basic scientific principles of managing crop nutrients are universal



Performance indicators	Nutrient loss	Stakeholder input
Nutrient balance	ENVIRONMENTAL	Biodiversity Soil erosion
Resource Energy use Labor effic- Nutrient iencies: Water	Source Rate	Water & air quality Ecosystem services
Yield Quality	Time Place	Affordable food Working conditions
Profit	Cropping System	SOCIAL
Return on inv	Soil productivity Farm income Yield stability	Adoption

4R Plant Nutrition – Decision Cycle

Understanding NERP and what it can mean to you

> Nitrous oxide Emission Reduction Protocol

2/4

CANADIAN FERTILIZER INSTITUTE INSTITUT CANADIEN DES ENGRAIS

Benefits

Farmers

• Offset credit for reduced GHGs

Government

- Tool to meet emission reduction targets
- ISO 14064-2 criteria for "real, measurable, additional, verifiable"
- Approved October 2010 by Alberta Environment

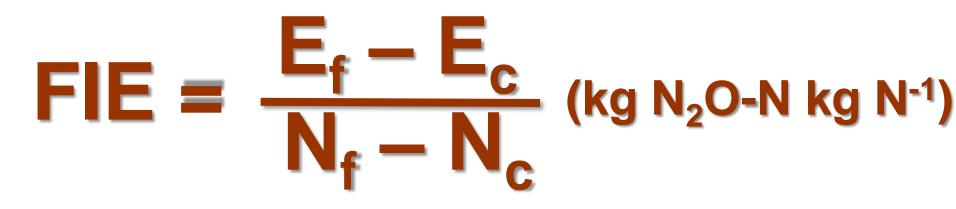
Researchers


 Advance science relating farm practices to N₂O emissions

Eastern Canada meta-analysis for NERP

Objective:

- To quantify the impact of fertilizer management practices – source, rate, time, and place – on N₂O emission.
- Analyze aggregated data on N₂O emission response to fertilizer N application, for all published research conducted in Eastern Canada (ON, QC, NB, NS).
- Emissions summed on a site-year basis


Eastern Canada meta-analysis for NERP

Focus

 20 studies on S-R-T-P with rate-effect comparisons at constant source, time and place

Hypotheses:

 Source, rate, time, place influence fertilizer-induced N₂O emission (FIE) over a growing season

Crop, soil and site characteristics in 20 studies furnishing 197 observations of FIE in Eastern Canada

Year (18)	1978 1979 1992 1993 1994 1995 1996 1997 1998 2000 2001 2002 2003 2004 2005 2006 2007 2008
Province (4)	QC-57%, ON-29%, NB-9%, NS-5%
Crop (6)	Corn (60%), Forage (29%), Fallow (4%) Cereal (3%), Potato (3%), Soybean (1%)
Soil texture	Median 30% sand, range 7-85%
Soil pH	Median 6.4; Range 5.1-7.7
Source (7)	AN (34%), urea (20%), manure (20%) UAN (13%) NH4 (10%) nitrate (3%) EEF (2%)
Rate	Median 142; range 20-400 kg N ha ⁻¹
Time (4)	Split (35%) May (34%) June (22%) Other (9%)
Place (4)	BR-SUR-T (41%), BR-INC-T (26%), BAND (24%), BR-SUR-NT (8%)

Mixed linear model – FIE

Effect	Estimate	se	df	t	р
Sand	-1.71	0.4	181	-4.6	<.0001
Soil pH	-0.37	0.1	181	-2.7	0.0070
Type 3 Tests	of Fixed Effects		df	F	р
Source		6	181	3.1	0.007
Time		3	181	5.9	0.001
Place		3	181	2.1	0.101

- Preliminary analysis
- SAS PROC MIXED restricted maximum likelihood (REML); years random; N=197; adapted from Stehfest & Bouwman, 2006
- Further analysis ongoing for specific SRTP for specific crops

Direct and indirect emissions

• Direct:

- FIE median, mean, lsmean = 6, 11, 15 g N_2O-N kg N^{-1}
- FIE (rate effect) modified by source-time-place practices
- Indirect:
 - Larger than direct?
 - A function of rate? of N losses? of N use efficiency?
- Emission per unit of yield

Potential ROI: Ontario corn N management research

	CURRENT	OPTIMUM	FUTURE
N applied (kg/ha)	146	100	144
Yield (kg/ha)	8440	8390	10980
Partial N Balance (PNB)	72%	105%	95%
Recovery Efficiency (RE)	30%	43%	55%

NET SOCIETAL BENEFIT (\$M)

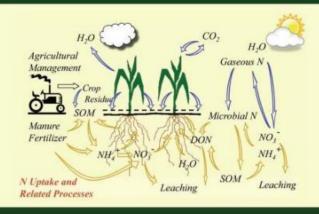
Potential ROI: Ontario corn N management research

	CURRENT	OPTIMUM	DIFF	FUTURE
N applied (kg/ha)	146	100		144
Yield (kg/ha)	8440	8390		10980
Partial N Balance (PNB)	72%	105%		95%
Recovery Efficiency (RE)	30%	43%		55%
Annual Benefits to Ontario:				
Yield benefit from N use (\$M)	389	382		809
Cost of N fertilizer (\$M)	168	115		166
Net Return To Grower (\$M)	221	267	46	644

NET SOCIETAL BENEFIT (\$M)

Assumes: 1M ha, \$165/t corn, \$1.15/kg N, \$30/t CO₂-eq, 1%-2% N₂O-N loss, \$0.50/lb N loss

Potential ROI: Ontario corn N management research


	CURRENT	OPTIMUM	DIFF	FUTURE
N applied (kg/ha)	146	100		144
Yield (kg/ha)	8440	8390		10980
Partial N Balance (PNB)	72%	105%		95%
Recovery Efficiency (RE)	30%	43%		55%
Annual Benefits to Ontario:				
Yield benefit from N use (\$M)	389	382		809
Cost of N fertilizer (\$M)	168	115		166
Net Return To Grower (\$M)	221	267	46	644
GHG emission cost (\$M)	-70	-45		-52
Nitrate loss cost (\$M)	-24	-15		-12
Ammonia detriment cost (\$M)	-18	-11		-9
NET SOCIETAL BENEFIT (\$M)	108	197	89	571

Assumes: 1M ha, \$165/t corn, \$1.15/kg N, \$30/t CO₂-eq, 1%-2% N₂O-N loss, \$0.50/lb N loss

Managing Crop Nitrogen for Weather

Quantifying and Understanding Plant Nitrogen Uptake for Systems Modeling

Proceedings of the Symposium "Integrating Weather Variability into Nitrogen Recommendations"

> Sponsored by the Soil Science Society of America

Edited by: T.W. Bruulsema

Published by the International Plant Nutrition Institute *Edited by* Liwang Ma Lajpat R. Ahuja Thomas W. Bruulsema

Summary

- 1. Source, time and place impact N₂O emissions induced by fertilizer N.
- 2. Protocols such as NERP provide context for scientists to shape the future.
- 3. Societal benefits justify larger investments in research to adapt N management to weather and improve N efficiency.

Program Report 2010

GROWING THE RIGHT WAY

nane.ipni.net

Acknowledgments

Canadian Fertilizer Institute

Ontario Agri-Business Association

Ontario Soil & Crop Improvement Association

