Global Potassium Reserves and Potassium Fertilizer Use

Terry L. Roberts,
President, IPNI

Symposium – Global Nutrient Cycling
Monday, October 6, 2008
2008 Joint Annual Meeting
Potassium (K) and Potash

• K present in most rocks and soils

• Economic sources ...
 – sedimentary salt beds remaining from ancient inland seas (evaporite deposits)
 – salt lakes and natural brines

• Potash refers to a variety of K-bearing minerals
Common K Minerals

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Composition</th>
<th>K$_2$O, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sylvite</td>
<td>KCl</td>
<td>63.1</td>
</tr>
<tr>
<td>Sylvinite</td>
<td>KCl/NaCl mixture</td>
<td>~ 28.0</td>
</tr>
<tr>
<td>Carnallite</td>
<td>KCl\cdotMgCl$_2$$\cdot$6H$_2$O</td>
<td>17.0</td>
</tr>
<tr>
<td>Kainite</td>
<td>4KCl\cdot4MgSO$_4$$\cdot$11H$_2$O</td>
<td>19.3</td>
</tr>
<tr>
<td>Langbeinite</td>
<td>K$_2$SO$_4$$\cdot$2MgSO$_4$</td>
<td>22.7</td>
</tr>
<tr>
<td>Polyhalite</td>
<td>K$_2$SO$_4$$\cdot$2MgSO$_4$$\cdot$2CaSO$_4$$\cdotH_2$O</td>
<td>15.6</td>
</tr>
<tr>
<td>Niter</td>
<td>KNO$_3$</td>
<td>46.5</td>
</tr>
</tbody>
</table>
Common K Minerals

• Sylvite (KCl) ... abundant in commercial deposits
• Sylvinite (KCl + NaCl) also common
• Hartsalz ... ore deposits with SO₄ salts (kieserite [MgSO₄] or anhydrite [CaSO₄]) are limited ... Europe
• Langbeinite occurs New Mexico and Ukraine
World Potash Reserves

• About 100 large buried deposits + 100 brine deposits of commercial potential

• The world has an estimated 250 billion metric tons of K_2O resources

Source: U.S. Geological Survey
Potash Resources and Reserves

• Resources include proven, probable, and inferred reserves
 – Reserves: deposits of sufficient quantity and quality that are currently mined
 – Reserve base: reserves + deposits that are marginally economic or sub economic

• U.S. Geological Survey estimates global reserves at 18 billion t K₂O ... 8.3 billion t considered commercially exploitable.

Potash Reserves and Reserve Base

Reserves, ‘000 t K₂O
- 8 - 90
- 91 - 300
- 301 - 750
- 751 - 4400

Reserve Base, ‘000 t K₂O
- 30 - 300
- 301 - 1000
- 1001 - 2200
- 2201 - 9700

Potash Deposits – North America

- World’s largest reserves occur in Saskatchewan
- Ore is exceptionally high grade (25-30% K₂O) at depths of 950-1,100 m increasing to > 3,500 m
- Uniform thickness (2.4-3 m) and mineralization and no structural deformations
- Sylvinitc, some carnallite, and clay

Potash Reserves In Saskatchewan

Source: PPIC 1989
Potash Deposits – FSU

• FSU has extensive proven reserves of K minerals … second only to the deposits in Saskatchewan

• Russia – Verkhnekamsk deposit in the Urals near Solikamsk
 – Potash depth at 75 to 450 m in 13 potentially minable beds ranging in thickness from 26 to 30 m (sylvinite) and 70 to 80 m (zone of sylvinite-carnallite).
 – Mined beds 1.2 to 6 m thick with 15% K$_2$O with 3 to 5% insolubles

• Belarus – Starobinsk deposit is 2nd largest in ore body in FSU near Soligorsk
 – 30 potash beds in 4 horizons. Most mining 350 to 620 m depth in second horizon (1.8 to 4.4 m thick)
 – Sylvinite ore averaging 11% K$_2$O and 5% insolubles

Stone, 2002, Canadian Minerals Yearbook
Potash Deposits – Western Europe

- Oldest deposits are the Hessen and Thüringen beds in southern Germany
 - contain 15 to 20% sylvite, kieserite, and carnallite (~10% K₂O)
 - Beds are relatively flat-lying, but also folding, with some barren zones, sudden thickness changes, etc. making mining difficult

- Also carnallite and kieserite deposits in central Germany and sylvite and carnallite in northern Germany

- Sylvite deposits in England and sylvinite in Spain

Potash Deposits

• Middle East: K extracted from Dead Sea
 – contains an estimated 1 billion t KCl

• Latin America
 – sylvinite and carnallite in the Sergipe basin in Brazil
 – KNO₃ in Chile in Atacama Desert (est. 1 billion t NaNO₃ and 100 million t KNO₃) and Salar de Atacama, a high-attitude dry lake (brine est. at 120 million t KCl and 80 million t K₂SO₄)

• Asia: Carnallite and K-bearing brines in Qinghai and Xinjiang Provinces

• Undeveloped Deposits
 – Thailand, Argentina, Amazon Basin in Brazil, Morocco, Poland, and additional deposits in the FSU

Production of KCl and K$_2$SO$_4$, Mt

Source: IFA Statistics
World Mine Production, 2007

% of total production, 2007

Source: IFA Statistics
Canada: potash export by destination in 2007, ‘000 t K$_2$O

Source: IFA Production and Trade Statistics
Russia: potash export by destination in 2007, '000 t K₂O

Source: IFA Production and Trade Statistics
Germany: potash export by destination in 2007, '000 t K₂O

Source: IFA Production and Trade Statistics
Israel/Jordan: Potash export by destination in 2007, ‘000 t K₂O

Source: IFA Production and Trade Statistics
WORLD POTASH PRODUCTION AND CONSUMPTION,
MT K₂O

Source: IFA Statistics
Regional potash consumption,
‘000 t K₂O

Source: IFA Production and Trade Statistics
Potash consumption, ‘000 t K₂O

- 4 countries accounted for two-thirds of potash imports
 - US 18%, Brazil 16%, China 21%, and India 9%

Source: IFA Production and Trade Statistics
Global Fertilizer Consumption Forecasts to 2012/13 (Mt nutrients)

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P$_2$O$_5$</th>
<th>K$_2$O</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ave. 2005/06 to 2007/08 (e)</td>
<td>95.5</td>
<td>38.6</td>
<td>27.6</td>
<td>162.1</td>
</tr>
<tr>
<td>2012/13 (f)</td>
<td>115.6</td>
<td>45.7</td>
<td>33.0</td>
<td>194.3</td>
</tr>
<tr>
<td>Ave. Annual Change</td>
<td>+3.2%</td>
<td>+2.8%</td>
<td>+3.0%</td>
<td>+3.1%</td>
</tr>
</tbody>
</table>

Forecast Potash Demand Through 2012/13

% Average Annual Increase
2005/06–07/08 vs. 2012/13

WORLD POTASH SUPPLY/DEMAND BALANCE

World Potash Supply/Demand Balance

World potash supply/demand balance

World potash supply/demand balance

• Supply/demand balance is considered very tight and is expected to be so for the next few years ... triggered an increase in world potash prices
New Potash Capacity
2008 to 2012

<table>
<thead>
<tr>
<th>Year</th>
<th>Mt K₂O</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>0.84</td>
<td>Jordan, Russia, Israel, Canada, USA</td>
</tr>
<tr>
<td>2010</td>
<td>1.02</td>
<td>Canada, Russia, Israel</td>
</tr>
<tr>
<td>2011</td>
<td>1.14</td>
<td>Canada, Russia, Israel</td>
</tr>
<tr>
<td>2012</td>
<td>4.74</td>
<td>Canada, Argentina, Belarus, Jordan</td>
</tr>
<tr>
<td>Total</td>
<td>7.74</td>
<td></td>
</tr>
</tbody>
</table>

Tight supply/demand balance … new interest in potash mining

- Saskatchewan is the world’s largest producer with 37% of supply and > 50% of global potash reserves
 - No potash exploration permits issued 15 years prior to 2004 … next 3 years the area under lease increased from 250,000 to 3 million hectares
- Estimated capital cost for a conventional mine … $2.8 billion, excluding infrastructure outside the plant gate and with no production for 5-7 years.
Why the increased demand for fertilizer?

- Increased food demand and less land to produce it

Source: FAO
Why the increased demand for fertilizer?

• Diets are changing ... more protein
• Requires more feed grains to produce protein
 – 7 kg/kg beef,
 – 4 kg/kg pork, and
 – 2 kg/kg poultry

![Meat consumption chart]

Source: FAO
Why the increased demand for fertilizer?

- Biofuels ... continued expected growth ... leads to increasing demand for corn and other crops

Source: FAPRI 2008
Why the increased demand for fertilizer?

World wheat plus coarse grains ending stocks

Source: USDA-FAS, 12/2007
Low crop yields in the developing world
(Ave. 2005 – 2007)

Source: FAO
Concluding Remarks

• Global potash supply/balance will remain tight through 2012
 – During this time demand will absorb capacity increases
 – Potential surplus ... 2.2 and 3.9 Mt K₂O, which is considered marginal given plant’s production configuration and ramp-up stages

• 2012 ... potential capacity should exceed demand
Concluding Remarks

• At present levels of production (33 Mt K₂O per year) and with current/planned capacity, the industry can easily meet future demand
• Reserves (8.3 billion t) are sufficient to supply potash for 250 years ... another 250+ considering the reserve base (18 billion t)
• Allowing for known resources (250 billion t) ... there is sufficient potash to meet demand for thousands of years
Thank You