Potassium Cycles through Complicated Ecosystems to Sustain Plant and Animal Life
Potassium Is Essential for Plants

- Taken up by the plant as K⁺
- Does not form organic compounds in the plant
- Is vital to photosynthesis and protein synthesis
- Is associated with many metabolic functions

- Essential role for regulating leaf stomata and controlling water use
Potassium and Animal Nutrition

- Potassium is essential for many metabolic functions
- It maintains salt balance between cells and body fluids
- Adequate K is essential for nerve function and preventing muscle cramps
- It is routinely added to many animal feeds

Since K^+ is not stored in the human body, dietary replacement is required on a regular basis.

Government agencies state that:
...diets containing foods that are good sources of potassium and low in sodium may reduce the risk of high blood pressure and stroke.
The History of Potash

Element symbol K comes from Latin *Kalium*

Allow trees to bioaccumulate K and boil wood ash to recover nutrients…

Wood ash boiled in pots (**pot-ash**)

Not a sustainable practice
Potassium Fertilizer Is Mined and Produced in Many Parts of The World

Many other deposits are located throughout the world (size of dot proportional to production in 2009)
Where Does Potash Come From?

All commercial potash deposits come from marine sources:

1. Ancient seas that are now buried
2. Salt water brines
Some Common Potassium-Containing Minerals

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Composition</th>
<th>K$_2$O content (approx %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorides:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sylvinith</td>
<td>KCl·NaCl</td>
<td>28</td>
</tr>
<tr>
<td>Sylvite</td>
<td>KCl</td>
<td>63</td>
</tr>
<tr>
<td>Carnalite</td>
<td>KCl·MgCl$_2$·6H$_2$O</td>
<td>17</td>
</tr>
<tr>
<td>Kainite</td>
<td>4KCl·4MgSO$_4$·11H$_2$O</td>
<td>18</td>
</tr>
<tr>
<td>Sulfates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyhalite</td>
<td>K$_2$SO$_4$·2MgSO$_4$·2CaSO$_4$·2H$_2$O</td>
<td>15</td>
</tr>
<tr>
<td>Langbeinite</td>
<td>K$_2$SO$_4$·2MgSO$_4$</td>
<td>22</td>
</tr>
<tr>
<td>Schoenite</td>
<td>K$_2$SO$_4$·MgSO$_4$·4H$_2$O</td>
<td>23</td>
</tr>
<tr>
<td>Nitrates:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Niter</td>
<td>KNO$_3$</td>
<td>46</td>
</tr>
</tbody>
</table>
Potash Is Obtained By:

- Shaft mining
- Solution mining
- Evaporation of brines

Most potash deposits are too deep underground for surface mining.

Water bodies such as the Dead Sea and the Great Salt Lake.
The Largest Potash Deposits Are Deep Beneath the Earth’s Surface

Potash recovery requires complex and expensive mining techniques.

The depth of the ore may limit access to the deposit.

Example: Saskatchewan Deposits
Conventional Shaft Mining

Vertical shafts drilled to the depth of potash deposit

Lifts are installed to provide access for equipment, workers, and to remove ore
Conventional Shaft Mining

Vertical shafts drilled into the earth
Ore veins are extracted with machine mining or blast methods, adapted to the specific geologic formation

Continuous mining machines are found in many varieties adapted to the specific geologic formation
Conventional Shaft Mining

Vertical shafts drilled into the earth
Deep horizontally-uniform ore veins
are mined with continuous mining machines

“Drum-type” continuous mining machine
Conventional Shaft Mining

Vertical shafts drilled into the earth
Less uniform ore veins can be mined with rotary borers

“Drum-type” mining machines
Conventional Shaft Mining

Vertical shafts drilled into the earth
Some ore veins are mined using blast methods

Adding explosive prior to blast
Large underground chamber
Mining Techniques:

- Long panels
- Herringbone panels
Conventional Shaft Mining

Vertical shafts drilled into the earth
Ore veins are mined
Broken ore is transported to skip with a conveyor belt or shuttle car

Potash ore may be transported many kilometers—
from the mine face to the skip location
Conventional Shaft Mining

Vertical shafts drilled into the earth
Ore veins are mined with rotary borers or blast methods
Broken ore is transported to skip with a conveyor belt or shuttle car
Hoists bring ore to the surface for further processing

Example of underground storage and ore hoisting

Ore Storage

Crusher

Conveyor belt
Hoist System to Transport Ore to Surface

to processing

Potash Deposit
Crushing and Grinding

Reduce the particle size to <2 mm prior to separating the potash minerals from the clay and other salts.
Scrubbing and Desliming (Wet Separation)

Potash ore is rinsed and agitated with a saturated salt solution to remove clay and impurities.
Flotation Separation

Amine reagents coat KCl but not NaCl

Air bubbles cling to amine and float KCl to surface while NaCl and clay sink to bottom
Flotation

Potassium-containing minerals rise to the surface of the flotation cells and then skimmed off.
Heavy-Media Separation of KCl from NaCl

In a solution with a density between 1.99 and 2.16 g/cm³, KCl will float and NaCl will sink – allowing mineral separation.

Ground magnetite mineral is added to the brine to reach 2.08 g/cm³ density.

Magnetite is recovered with magnets and reused.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCl</td>
<td>1.99</td>
</tr>
<tr>
<td>NaCl</td>
<td>2.16</td>
</tr>
<tr>
<td>K\cdot MgSO₄</td>
<td>2.83</td>
</tr>
<tr>
<td>CaSO₄</td>
<td>2.96</td>
</tr>
<tr>
<td>Magnetite</td>
<td>5.18</td>
</tr>
</tbody>
</table>
Final Steps: Dewatering and Sizing

A final rinse with saturated brine water and then the finished product is dewatered, centrifuged, dried, and compacted to desired particle sizes.
Compacting

Compacting produces granular material by compressing fine particles of hot KCl in a roller press.

The sheet of pressed flakes is crushed and screened to uniform sizes.
Crystallization

The process to make pure and totally soluble KCl

Hot-process: KCl is dissolved in boiling water to dissolve NaCl and KCl.

As the hot brine cools, salts differentially crystallize and are removed from solution.

Cold process: KCl solubility is lower in cold temperatures than Na and Mg salts, allowing crystallization and separation.
Electrostatic Separation (Dry Separation)

Mixed ore

Electrostatic generator provides static charge to some minerals:

Non-conductive KCl is separated from charged NaCl
Solution Mining

Used when potash deposits are very deep, have irregular deposits, or have become flooded.

Heated salt water is injected into the mine and circulated to dissolve potash minerals and salt from the walls.

Submersible pumps lift the brine to evaporation ponds where the potash crystallizes and settles to the bottom.
Solution Mining Example

- Brine brought to surface from depth of 1000 m
- Evaporated in 180 ha of vinyl-lined solar ponds
Potash Production Also Occurs from Natural Salt Brines
Tailing Disposal

Common potash ores, such as sylvinitite, contains up to 50% NaCl, up to 15% clay

After potash is removed, separated salt and clay are backfilled into the mine or stockpiled into a tailing management area

Tailings solidify into rock-like mass (mostly NaCl)

Managed to minimize off-site movement
Storage
Shipping Potash Fertilizers
2009 Global Potash Use, %

- China: 21%
- U.S.A.: 15%
- Brazil: 14%
- India: 14%
- Other Asia: 12%
- Western Europe: 7%
- All Others: 17%
International Global Potash Trade

Example of some major international potash distribution channels
Potassium Chloride (Muriate of Potash; MOP)

- KCl
- Grade: 60 to 63% K₂O; 46%Cl
- Primarily mined as sylvinitite ore containing KCl and NaCl
- Milling and a floatation agent used to separate salts
- Many colors and sizes available
- Traces of iron oxide give some particles a reddish tint
Potassium Sulfate (Sulfate of Potash; SOP)

- \(\text{K}_2\text{SO}_4 \)
- Grade: 48 to 53% \(\text{K}_2\text{O} \)
 17 to 18% \(\text{S} \)
- Rarely found in pure form in nature
- Generally produced by manipulating potash ores to remove other materials
- Valued when both K and S are needed for plant nutrition
Potassium Magnesium Sulfate (Langbeinite)

- $\text{K}_2\text{SO}_4 \cdot 2\text{MgSO}_4$
- Grade: 20 to 22% K_2O
 - 21 to 22% S
 - 10 to 11% Mg

- Distinct geologic material found in only a few places in the world

- Generally produced by manipulating potash ores to remove other materials

- Valued when both K, S, and Mg are needed for plant nutrition
Potassium Nitrate
(Nitrate of Potash; NOP)

- \(\text{KNO}_3 \)
- Grade: 44% \(\text{K}_2\text{O} \)
 13% N
- Made by reacting KCl with nitrate salts or nitric acid
- Valued when both K and N are needed for plant nutrition
Other Potassium Fertilizers

• Small quantities of specialty potash fertilizers are made for unique crop or soil conditions, such as:

 • Potassium phosphate (KH$_2$PO$_4$)
 • Potassium carbonate (K$_2$CO$_3$)
 • Potassium hydroxide (KOH)
 • Potassium thiosulfate (K$_2$S$_2$O$_3$)

All are manufactured from basic potash materials
Environmental Concerns with Potash

- Potash fertilizer has no significant impacts on water or air quality.

- Adequate potash is required for plants to use other essential nutrients. Healthy crop growth and efficient nutrient recovery results from balanced nutrition.

- Potash applications should be guided by soil and plant tissue testing where possible.

- Mine tailings require management to avoid off-site movement of salt and water.
Potash Fertilizers All Supply the Same Nutrient in the Soil

- $KCl \rightarrow K^+ + Cl^-$
- $K_2SO_4 \rightarrow 2K^+ + SO_4^{2-}$
- $K_2SO_4 \cdot 2MgSO_4 \rightarrow 2K^+ + 2Mg^{2+} + 3SO_4^{2-}$
- $K_2S_2O_3 \rightarrow 2K^+ + S_2O_3^{2-}$
- $KH_2PO_4 \rightarrow K^+ + H_2PO_4^-$
- $KNO_3 \rightarrow K^+ + NO_3^-$
High Yielding Crops Remove Large Amounts of K

Potassium is essential for many metabolic functions that directly impact crop yield and quality.

<table>
<thead>
<tr>
<th>Crop</th>
<th>Yield/A</th>
<th>Nutrient removal, lb K$_2$O/A</th>
<th>Yield, mt/ha</th>
<th>Nutrient removal, kg K$_2$O/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cotton</td>
<td>3 bales</td>
<td>55</td>
<td>1.6</td>
<td>62</td>
</tr>
<tr>
<td>Rice</td>
<td>70 cwt</td>
<td>25</td>
<td>7.8</td>
<td>28</td>
</tr>
<tr>
<td>Alfalfa</td>
<td>8 tons</td>
<td>390</td>
<td>18</td>
<td>437</td>
</tr>
<tr>
<td>Maize</td>
<td>180 bu</td>
<td>45</td>
<td>11</td>
<td>50</td>
</tr>
<tr>
<td>Wheat</td>
<td>60 bu</td>
<td>20</td>
<td>4</td>
<td>22</td>
</tr>
<tr>
<td>Potato</td>
<td>500 cwt</td>
<td>275</td>
<td>56</td>
<td>310</td>
</tr>
</tbody>
</table>
Potash Applications to Soil

Potash is often spread across a field or applied in concentrated bands beneath the soil surface.

Many application techniques are used.

Potash fertilizer has limited mobility in most soils.

It is retained by soil colloids on cation exchange sites.
Potash Application through Irrigation Systems

Most K fertilizers are very water soluble and many are suitable for use in irrigation systems
Many studies have demonstrated benefits from foliar application to plants to alleviate stress.

Foliar K applications are supplemental to the major supply of nutrients through the roots.

Applications of K can alleviate mid-season deficiencies or supplement the soil supply during periods of peak demand by the plant.
Additional information on plant nutrient production and management are available from the IPNI website:

www.ipni.net